[1] BENITO J, MEASE K D. Reachable and controllable sets for planetary entry and landing[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3):641-654. [2] HSU F K, KUO T S, CHERN J S. Landing domain analysis of shuttle re-entry vehicles[J]. International Journal of Systems Science, 1991, 22(7):1145-1158 [3] CHEN S Y. The longitudinal and lateral range of hypersonic glide vehicles with constant bank angle[EB/OL]. (1966-01-15)[2021-04-15].https://www.researchgate.net/publication/235011911_THE_LONGITUDINAL_AND_LATERAL_RANGE_OF_HYPERSONIC_GLIDE_VEHICLES_WITH_CONSTANT_BANK_ANGLE [4] NYLAND F S. Hypersonic turning with constant bank angle control[EB/OL]. (1965-01-16)[2021-04-15].https://www.researchgate.net/publication/253771278_Hypersonic_Turning_with_Constant_Bank_Angle_Control [5] 曾夕娟, 钟范俊, 丁学良, 等. 一种可重复使用再入飞行器的覆盖区求解方法[J]. 载人航天, 2017, 23(1):14-20,32. ZENG X J, ZHONG F J, DING X L, et al. Method for landing footprint generation in reusable vehicles[J]. Manned Spaceflight, 2017, 23(1):14-20,32(in Chinese). [6] 王涛, 张洪波, 李永远, 等. Gauss伪谱法的再入可达域计算方法[J]. 国防科技大学学报, 2016, 38(3):75-80. WANG T, ZHANG H B, LI Y Y, et al. Landing footprint generation of entry vehicle based on Gauss pseudospectral method[J]. Journal of National University of Defense Technology, 2016, 38(3):75-80(in Chinese). [7] 傅瑜, 杨卫丽, 崔乃刚. 升力式再入飞行器覆盖范围计算分析[J]. 哈尔滨工业大学学报, 2012, 44(11):13-19. FU Y, YANG W L, CUI N G. Calculation of reachable landing locations of lift entry vehicle[J]. Journal of Harbin Institute of Technology, 2012, 44(11):13-19(in Chinese). [8] 傅瑜. 升力式天地往返飞行器自主制导方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012. FU Y. Autonomous guidance method for lift transportation vehicle[D]. Harbin:Harbin Institute of Technology, 2012(in Chinese). [9] 汪雷, 刘欣, 杨涛, 等. 高超声速滑翔式飞行器目标覆盖范围的计算方法[J]. 弹道学报, 2014, 26(1):50-55. WANG L, LIU X, YANG T, et al. Footprint calculation for hypersonic glide vehicle[J]. Journal of Ballistics, 2014, 26(1):50-55(in Chinese). [10] 冯必鸣, 聂万胜, 李柯. 再入飞行器可达区域近似算法及地面覆盖研究[J]. 航天控制, 2012, 30(6):43-49. FENG B M, NIE W S, LI K. Research on closest-aproach of footprint and coverage for reentry vehicle[J]. Aerospace Control, 2012, 30(6):43-49(in Chinese). [11] 樊朋飞, 郭云鹤, 凡永华, 等. HGV平衡滑翔式轨迹可达区域计算方法研究[J]. 计算机测量与控制, 2019, 27(5):136-140. FAN P F, GUO Y H, FAN Y H, et al. Footprint calculation of HGV with equilibrium gliding trajectory[J]. Computer Measurement & Control, 2019, 27(5):136-140(in Chinese). [12] 边九州. 组合动力天基对地打击飞行器轨迹设计与覆盖范围分析[D]. 哈尔滨:哈尔滨工业大学, 2014. BIAN J Z. Trajectory design and coverage aera analysis of the space-based strike aircraft vehicle powered by combined cycle engine[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese). [13] GAO C S, JIANG C W, JING W X. Optimization of projectile state and trajectory of reentry body considering attainment of carrying aircraft[J]. Journal of Systems Engineering and Electronics, 2017, 28(1):137-144. [14] ARSLANTAŞ Y E, OEHLSCHLÄGEL T, SAGLIANO M. Safe landing area determination for a Moon lander by reachability analysis[J]. Acta Astronautica, 2016, 128:607-615. [15] 赵江, 周锐. 基于粒子群优化的再入可达区计算方法研究[J]. 兵工学报, 2015, 36(9):1680-1687. ZHAO J, ZHOU R. Landing footprint computation based on particle swarm optimization[J]. Acta Armamentarii, 2015, 36(9):1680-1687(in Chinese). [16] 蔺君, 何英姿, 黄盘兴. 基于差分进化算法的再入可达域快速计算[J]. 中国空间科学技术, 2020, 40(4):54-60. LIN J, HE Y Z, HUANG P X. Fast reentry landing footprint calculation using differential evolution algorithm[J]. Chinese Space Science and Technology, 2020, 40(4):54-60(in Chinese). [17] WEI X, WANG Y J, LIU L, et al. A method for entry vehicle's maneuver capacity analysis and evaluation[C]//Proceedings of 2014 International Conference on Modelling, Identification & Control. Piscataway:IEEE Press, 2014:326-331. [18] 吴楠, 王锋, 赵敏, 等. 高超声速滑翔再入飞行器的可达区快速预测[J]. 国防科技大学学报, 2021, 43(1):1-6. WU N, WANG F, ZHAO M, et al. Fast prediction for footprint of hypersonic glide reentry vehicle[J]. Journal of National University of Defense Technology, 2021, 43(1):1-6(in Chinese). [19] 赵泽端, 崔平远, 朱圣英. 火星大气进入段纵向可达区生成的解析同伦法[J]. 宇航学报, 2019, 40(9):1024-1033. ZHAO Z D, CUI P Y, ZHU S Y. An analytical homotopic method to generate the reachable longitudinal area for Mars entry[J]. Journal of Astronautics, 2019, 40(9):1024-1033(in Chinese). [20] LIANG Z X, CHEN J, REN Z. Feasible zone for planetary entry vehicles[J]. Aerospace Science and Technology, 2018, 79:459-467. [21] XIANG Y, KUN L. A design method for constellation of lifting reentry vehicles[C]//11th Asian Conference on Chemical Sensors, 2017. [22] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281. [23] 王光伦. 高超声速飞行器再入段预测校正制导研究[D]. 哈尔滨:哈尔滨工业大学, 2010. WANG G L. Predictor-corrector reentry guidance for hypersonic vehicles[D]. Harbin:Harbin Institute of Technology, 2010(in Chinese). [24] PAN L, PENG S C, XIE Y, et al. 3D guidance for hypersonic reentry gliders based on analytical prediction[J]. Acta Astronautica, 2020, 167:42-51. [25] LIANG Z X, ZHU S Y. Constrained predictor-corrector guidance via bank saturation avoidance for low L/D entry vehicles[J]. Aerospace Science and Technology, 2021, 109:106448. [26] 章吉力, 刘凯, 樊雅卓, 等. 考虑禁飞区规避的空天飞行器分段预测校正再入制导方法[J]. 宇航学报, 2021, 42(1):122-131. ZHANG J L, LIU K, FAN Y Z, et al. A piecewise Predictor-corrector Re-entry guidance algorithm with No-fly zone avoidance[J]. Journal of Astronautics, 2021, 42(1):122-131(in Chinese). |