[1] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安:西北工业大学出版社, 2005. YAN C J, FAN W. Principle and key technology of pulse detonation engine[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese). [2] WANG K, FAN W, YAN Y, et al. Operation of a rotary-valved pulse detonation rocket engine utilizing liquid kerosene and oxygen[J]. Chinese Journal of Aeronautics, 2011, 24(6):726-733. [3] DUNLAP R, BREHM R L, NICHOLLS J A. A preliminary study of the application of steady-state detonative combustion to a reaction engine[J]. Journal of Jet Propulsion, 1958, 28(7):451-456. [4] CHOI J Y, KIM D W, JEUNG I S, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation[J]. Proceedings of the Combustion Institute, 2007, 31(2):2473-2480. [5] 王健平, 姚松柏. 连续爆轰发动机原理与技术[M]. 北京:科学出版社, 2018. WANG J P, YAO S B. Principle and technology of continuous detonation engine[M]. Beijing:Science Press, 2018(in Chinese). [6] ISHIHARA K, NISHIMURA J, GOTO K, et al. Study on a long-time operation towards rotating detonation rocket engine flight demonstration:AIAA-2017-1062[R]. Reston:AIAA, 2017. [7] 王超, 刘卫东, 刘世杰, 等. 吸气式连续旋转爆震与来流相互作用[J]. 航空学报, 2016, 37(5):1411-1418. WANG C, LIU W D, LIU S J, et al. Interaction of air-breathing continuous rotating detonation with inflow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1411-1418(in Chinese). [8] WEN H C, XIE Q F, WANG B. Propagation behaviors of rotating detonation in an obround combustor[J]. Combustion and Flame, 2019, 210:389-398. [9] XIE Q F, WEN H C, LI W H, et al. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition[J]. Energy, 2018, 151:408-419. [10] WANG Y H, WANG J P. Effect of equivalence ratio on the velocity of rotating detonation[J]. International Journal of Hydrogen Energy, 2015, 40(25):7949-7955. [11] MA Z, ZHANG S J, LUAN M Y, et al. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine[J]. International Journal of Hydrogen Energy, 2018, 43(39):18521-18529. [12] ZHENG Q, MENG H L, WENG C S, et al. Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave[J]. Defence Technology, 2020, 16(6):1106-1115. [13] 夏镇娟, 马虎, 卓长飞, 等. 圆盘结构下旋转爆震波的不稳定传播特性[J]. 航空学报, 2018, 39(2):121438. XIA Z J, MA H, ZHUO C F, et al. Characteristics of unstable propagation of rotating detonation wave in plane-radial structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121438(in Chinese). [14] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Initiation of detonation of fuel-air mixtures in a flow-type annular combustor[J]. Combustion, Explosion, and Shock Waves, 2014, 50(2):214-222. [15] GEORGE A S, DRISCOLL R, ANAND V, et al. On the existence and multiplicity of rotating detonations[J]. Proceedings of the Combustion Institute, 2017, 36(2):2691-2698. [16] ZHOU R, WANG J P. Numerical investigation of shock wave reflections near the head ends of rotating detonation engines[J]. Shock Waves, 2013, 23:461-472. [17] KINDRACKI J, WOLAŃSKI P, GUT Z. Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures[J]. Shock Waves, 2011, 21(2):75-84. [18] ANAND V, GUTMARK E. Rotating detonation combustors and their similarities to rocket instabilities[J]. Progress in Energy and Combustion Science, 2019, 73:182-234. [19] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216. [20] BYKOVSKII F A, ZHDAN S A. Current status of research of continuous detonation in fuel-air mixtures (Review)[J]. Combustion, Explosion, and Shock Waves, 2015, 51(1):21-35. [21] TANG X M, WANG J P, SHAO Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4):997-1008. [22] LIN W, ZHOU J, LIU S J, et al. An experimental study on CH4/O2 continuously rotating detonation wave in a hollow combustion chamber[J]. Experimental Thermal and Fluid Science, 2015, 62:122-130. [23] ZHANG H L, LIU W D, LIU S J. Effects of inner cylinder length on H2/air rotating detonation[J]. International Journal of Hydrogen Energy, 2016, 41(30):13281-13293. [24] WANG Z C, WANG K, LI Q G, et al. Effects of the combustor width on propagation characteristics of rotating detonation waves[J]. Aerospace Science and Technology, 2020, 105:106038. [25] LIU S J, PENG H Y, LIU W D, et al. Effects of cavity depth on the ethylene-air Continuous Rotating Detonation[J]. Acta Astronautica, 2020, 166:1-10. [26] PENG H Y, LIU W D, LIU S J, et al. The effect of cavity on ethylene-air Continuous Rotating Detonation in the annular combustor[J]. International Journal of Hydrogen Energy, 2019, 44(26):14032-14043. [27] PENG H Y, LIU W D, LIU S J, et al. Effects of cavity location on ethylene-air continuous rotating detonation in a cavity-based annular combustor[J]. Combustion Science and Technology, 2021, 193(16):2761-2782. [28] PENG L, WANG D, WU X S, et al. Ignition experiment with automotive spark on rotating detonation engine[J]. International Journal of Hydrogen Energy, 2015, 40(26):8465-8474. [29] YANG C L, WU X S, MA H, et al. Experimental research on initiation characteristics of a rotating detonation engine[J]. Experimental Thermal and Fluid Science, 2016, 71:154-163. [30] 林伟. 连续旋转爆震波传播机理、工作特性及其在推进中的应用研究[D]. 长沙:国防科技大学, 2015. LIN W. Continuously rotating detonation wave:Its propagation mechanism, operating characteristics and propulsive application[D]. Changsha:National University of Defense Technology, 2015(in Chinese). [31] KATTA V R, CHO K Y, HOKE J L, et al. Effect of increasing channel width on the structure of rotating detonation wave[J]. Proceedings of the Combustion Institute, 2019, 37(3):3575-3583. |