[1] LI J, LU H C, XUE K P, et al. Temporal netgrid model-based dynamic routing in large-scale small satellite networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6):6009-6021. [2] JAKOB P, SHIMIZU S, YOSHIKAWA S, et al. Optimal satellite constellation spare strategy using multi-echelon inventory control[J]. Journal of Spacecraft and Rockets, 2019, 56(5):1449-1461. [3] MCDOWELL J C. The low earth orbit satellite population and impacts of the SpaceX starlink constellation[J]. The Astrophysical Journal Letters, 2020, 892(2):L36. [4] DEL PORTILLO I, CAMERON B G, CRAWLEY E F. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband[J]. Acta Astronautica, 2019, 159:123-135. [5] GIAMBENE G, KOTA S, PILLAI P. Satellite-5G integration:A network perspective[J]. IEEE Network, 2018, 32(5):25-31. [6] REILAND N, ROSENGREN A J, ASCHENBRENNER M. The dynamical placement of mega-constellations[C]//42nd COSPAR Scientific Assembly, 2018, 42-43. [7] PARKINSON C L. Aqua:An earth-observing satellite mission to examine water and other climate variables[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):173-183. [8] SALOMONSON V V, BARNES W, MASUOKA E J. Introduction to MODIS and an overview of associated activities[J]. Earth Science Satellite Remote Sensing, 2006:12-32. [9] BARNES W L, SALOMONSON V V. MODIS:A global imaging spectroradiometer for the earth observing system[C]//Proc SPIE 10269, Optical Technologies for Aerospace Sensing:A Critical Review, 1992, 10269:280-302. [10] XIONG X X, CHE N Z, BARNES W. Terra MODIS on-orbit spatial characterization and performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2):355-365. [11] STOLL E, LETSCHNIK J, WILDE M, et al. The future role of relay satellites for orbital telerobotics[J]. Advances in Space Research, 2012, 50(7):864-880. [12] STOLL E, JAEKEL S, KATZ J, et al. SPHERES interact-Human-machine interaction aboard the International Space Station[J]. Journal of Field Robotics, 2012, 29(4):554-575. [13] STOLL E, SAENZ-OTERO A, TWEDDLE B. Multimodal human spacecraft interaction in remote environments[M]//Machine Learning and Systems Engineering, 2010:1-15. [14] LUNDIN R, STOLL E. Coverage time variation in a near-earth data relay satellite system[C]//57th International Astronautical Congress. Reston, Virigina:AIAA, 2006 [15] HARDER J, STOLL E, SCHIFFNER M, et al. A compact, light-weight high data-rate antenna system for remote-sensing orbiters and space exploration[J]. Acta Astronautica, 2009, 65(11-12):1738-1744. [16] LEINZ M R, CHEN C T, SCOTT P, et al. Modeling, simulation, testing, and verification of the orbital express autonomous rendezvous and capture sensor system (arcss)[C]//SPIE Defense and Security Symposium. Proc SPIE 6958, Sensors and Systems for Space Applications II, 2008, 6958:75-87. [17] HAZRA S, MUKHOPADHYAY A, GHOSH A R, et al. Environment and earth observation[M]. Cham:Springer International Publishing, 2017. [18] LEWIS H, RADTKE J, ROSSI A, et al. Sensitivity of the space debris environment to large constellations and small satellites[J]. Journal of the British Interplanetary Society, 2017, 70:105-117. [19] GUIDOTTI A, VANELLI-CORALLI A, KODHELI O, et al. Integration of 5G technologies in LEO mega-constellations[DB/OL]. arXiv preprint:1709.05807, 2017 [20] OKATI N, RIIHONEN T, KORPI D, et al. Downlink coverage and rate analysis of low earth orbit satellite constellations using stochastic geometry[J]. IEEE Transactions on Communications, 2020, 68(8):5120-5134. [21] DE WECK O L, DE NEUFVILLE R, CHAIZE M. Staged deployment of communications satellite constellations in low earth orbit[J]. Journal of Aerospace Computing, Information, and Communication, 2004, 1(3):119-136. [22] DE WECK O L, DE NEUFVILLE R, CHAIZE M. Enhancing the economics of communication satellites via orbital reconfigurations and staged deployment[C]//AIAA Space 2003 Conference & Exposition. Reston:AIAA, 2003. [23] CHAIZE M. Enhancing the economics of satellite constellations via staged deployment and orbital reconfiguration[D]. Cambridge:Massachusetts Institute of Technology, 2003. [24] LEWIS P, GÓMEZ-DANS J, KAMINSKI T, et al. An earth observation land data assimilation system (EO-LDAS)[J]. Remote Sensing of Environment, 2012, 120:219-235. [25] MORTARI D, WILKINS M P, BRUCCOLERI C. The flower constellations[J]. The Journal of the Astronautical Sciences, 2004, 52(1-2):107-127. [26] JIANG Y, ZHANG G X, LI G X, et al. Study on orthogonal IGSO global communication satellite constellation[C]//20116th International ICST Conference on Communications and Networking in China (CHINACOM). Piscataway:IEEE Press, 2011:1064-1068. [27] RIDER L. Optimized polar orbit constellations for redundant earth coverage[J]. Journal of the Astronautical Sciences, 1985, 33(2):147-161. [28] BESTE D C. Design of satellite constellations for optimal continuous coverage[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(3):466-473. [29] DAI G M, CHEN X Y, WANG M C, et al. Analysis of satellite constellations for the continuous coverage of ground regions[J]. Journal of Spacecraft and Rockets, 2017, 54(6):1294-1303. [30] ULYBYSHEV Y P. Design of satellite constellations with continuous coverage on elliptic orbits of Molniya type[J]. Cosmic Research, 2009, 47(4):310-321. [31] MORRISON J J. A system of sixteen synchronous satellites for worldwide navigation and surveillance[R]. Washington,D.C.:Federal Aviation Administration, 1973. [32] 周振宇, 郭广礼, 贾新果. 大地主题解算方法综述[J]. 测绘科学, 2007, 32(4):190-191, 174, 200. ZHOU Z Y, GUO G L, JIA X G. A review on solution of geodetic problem[J]. Science of Surveying and Mapping, 2007, 32(4):190-191, 174, 200(in Chinese). [33] HOOIJBERG M. Practical geodesy:Using computers[M]. Berlin:Springer, 1997 [34] AMDAHL G M. Validity of the single processor approach to achieving large scale computing capabilities[C]//Proceedings of the April 18-20, 1967, spring joint computer conference on-AFIPS'67(Spring). New York:ACM Press, 1967:483-485. [35] GUSTAFSON J L. Reevaluating Amdahl's law[J]. Communications of the ACM, 1988, 31(5):532-533. [36] HILL M D, MARTY M R. Amdahl's law in the multicore era[J]. Computer, 2008, 41(7):33-38. [37] BRÄUNL T, FEYRER S, RAPF W, et al. Skeletonizing[M]//Parallel Image Processing. Berlin, Heidelberg:Springer, 2001:33-49. [38] YANG Z Y, ZHU Y T, PU Y. Parallel image processing based on CUDA[C]//2008 International Conference on Computer Science and Software Engineering. Piscataway:IEEE Press, 2008:198-201. [39] PINEDA J. A parallel algorithm for polygon rasterization[C]//Proceedings of the 15th annual conference on Computer graphics and interactive techniques-SIGGRAPH'88. New York:ACM Press, 1988:17-20. [40] PINEDA J. A parallel algorithm for polygon rasterization[C]//Proceedings of the 15th annual conference on Computer graphics and interactive techniques-SIGGRAPH'88. New York:ACM Press, 1988:17-20. [41] WAUGH T C, HOPKINS S. An algorithm for polygon overlay using cooperative parallel processing[J]. International Journal of Geographical Information Systems, 1992, 6(6):457-467. [42] WANG Y F, CHEN Z J, CHENG L, et al. Parallel scanline algorithm for rapid rasterization of vector geographic data[J]. Computers & Geosciences, 2013, 59:31-40. [43] 曹建立, 陈志奎, 王宇新, 等. 高分辨图像区域填充的并行计算方法[J]. 计算机工程, 2021, 47(9):217-226, 234. CAO J L, CHEN Z K, WANG Y X, et al. Parallel computing method of region filling for high-resolution Images[J]. Computer Engineering, 2021, 47(9):217-226, 234(in Chinese). [44] 安洛生, 王利敏. 并行区域填充算法研究[J]. 现代计算机(专业版), 2014(34):6-8. AN L S, WANG L M. Research on the parallel region filling algorithm[J]. Modern Computer, 2014(34):6-8(in Chinese). |