[1] FAA. Aging airplane program:Widespread fatigue damage:FAA-2006-24281[S]. Washington, D.C.:FAA, 2010. [2] 李亚智, 李强, 沈培良. 运输类飞机防止广布疲劳损伤的适航要求[J]. 航空工程进展, 2011, 2(4):373-382. LI Y Z, LI Q, SHEN P L. An overview of airworthiness requirements for transport category airplanes to prevent widespread fatiguedamage[J]. Advances in Aeronautical Science and Engineering, 2011, 2(4):373-382(in Chinese). [3] 王生楠, 郑晓玲. 运输类飞机防止广布疲劳损伤的新规章解读[J]. 航空学报, 2010, 31(9):1758-1768. WANG S N, ZHENG X L. Study on proposed rules to preclude widespread fatigue damage for transport category aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1758-1768(in Chinese). [4] PITT S, JONES R. Multiple-site and widespread fatigue damage in aging aircraft[J]. Engineering Failure Analysis, 1997, 4(4):237-257. [5] National Transportation Safety Board. Report AAB-13-02[EB/OL]. Washington, D.C.:National Transportation Safety Board.[2017-11-10]. www. ntsb. gov. [6] 张健萍, 时新红, 张建宇, 等. 确定飞机结构WFD平均行为的寿命升降法[J]. 北京航空航天大学学报, 2016, 42(1):147-151. ZHANG J P, SHI X H, ZHANG J Y, et al. Life up and down method for determining WFD average behavior of aircraftstructures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1):147-151(in Chinese). [7] 徐武. 飞机结构多位置损伤分析的权函数法与剩余强度预测[D]. 上海:上海交通大学, 2012:21-30. XU W. Weight function method for aircraft structure multiple site damage analyses and residual strengthprediction[D]. Shanghai:Shanghai Jiao Tong University, 2012:21-30(in Chinese). [8] DAWICKE D S, NEWMAN J C. Analysis and prediction of multiple-site damage (MSD) fatigue crack growth:NASA-TP-3231[R]. Washington, D.C.:NASA, 1992. [9] BOWIE O L. Analysis of an infinite plate containing radial cracks at the boundary of an internal circular hole[J]. Studies in Applied Mathematics, 1956, 35(1-4):60-71. [10] NEWMAN J C. An improved method of collocation for the stress analysis of cracked plates with various shaped boundaries:NASA TN D-6376[R]. Washington, D.C.:NASA, 1971. [11] FU D S, ZHANG X. Analytical-variational method of solution for stress intensity factors about anisotropic and isotropic finite plates with double cracks emanating from holes[J]. Engineering Fracture Mechanics, 1995, 50(50):311-324. [12] ZHAO J, XIE L, LIU J, et al. A method for stressintensity factor calculation of infinite plate containing multiple hole-edge cracks[J]. International Journal of Fatigue, 2012, 35(1):2-9. [13] 郭树祥, 许希武. 任意多孔多裂纹有限大板的应力强度因子分析[J]. 固体力学学报, 2005, 26(3):351-358. GUO S X, XU X W. A study on the stress intensity factors of a finite plate with multiple elliptical holes andcracks[J]. Acta Mechanica Solida Sinica, 2005, 26(3):351-358(in Chinese). [14] MILLWATER H R. A simple and accurate method for computing stress intensity factors of collinear interacting cracks[J]. Aerospace Science & Technology, 2010, 14(8):542-550. [15] CHEN Y Z, WANG Z X. Solution of multiple crack problem in a finite plate using coupled integral equations[J]. International Journal of Solids & Structures, 2012, 49(1):87-94. [16] XU W, WANG H, WU X R, et al. A novel method for residual strength prediction for sheets with multiple site damage:Methodology and experimentalvalidation[J]. International Journal of Solids & Structures, 2014, 51(3-4):551-565. [17] XU W, WU X R. Weight functions and strip-yield model analysis for three collinearcracks[J]. Engineering Fracture Mechanics, 2012, 85:73-87. [18] XU W, WU X R, YU Y. Weight function, stress intensity factor and crack opening displacement solutions to periodic collinear edge holecracks[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40:2068-2079. [19] GALATOLO R, LAZZERI R. Experiments and model predictions for fatigue crack propagation in riveted lap-joints with multiple site damage[J]. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(3):307-319. [20] 王芳丽, 朱书华, 李宴宾, 等. 铝合金板广布损伤裂纹扩展顺序的数值分析[J]. 航空计算技术, 2014(2):66-69. WANG F L, ZHU S H, LI Y B, et al. Numerical analysis on crack propagation order of widespread damage in aluminum alloypanel[J]. Aeronautical Computing Technique, 2014(2):66-69(in Chinese). [21] American Society for Testing and Materials. Standard test method for measurement of fatigue crack growth rates:ASTM E 647-08[S].West Conshohocken, PA:ASTM International, 2008. [22] 中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社, 1993:352-353. Chinese Aeronautical Establishment. Stress intensity factors handbook[M]. Beijing:Science Press, 1993:352-353(in Chinese). [23] 吴学仁. 飞机结构金属材料力学性能手册[M]. 北京:航空工业出版社, 1996:156-157. WU X R. Handbook of mechanical properties of metallic materials for aircraftstructures[M]. Beijing:Aviation Industry Press, 1996:156-157(in Chinese). [24] LI H, YANG J, LI Z, et al. An approximate solution for the plane stress mode I crack interacting with an inclusion of arbitrary shape[J]. Engineering Fracture Mechanics, 2014, 116(1):190-196. [25] SHIVAKUMAR V, FORMAN R G. Green's function for a crack emanating from a circular hole in an infinite sheet[J]. International Journal of Fracture, 1980, 16(4):305-316. [26] WILLIAMS T N, NEWMAN J C, GULLETT P M. Crack-surface displacements for cracks emanating from a circular hole under various loading conditions[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 34(4):250-259. [27] ISIDA M. Stress intensity factors for the tension of an eccentrically cracked strip[J]. Journal of Applied Mechanics, 1966, 33(3):674-675. |