[1] Arar O F, Ayan K. A fexible rule-based framework for pilot performance analysis in air combat simulation system [J].Turkish Journal of Electrical Engineering and Computer Sciences, 2013, 22(21): 2397-2415.
[2] Fu L, Wang X G. Research on close air combat modeling of differential games for unmanned combat air vehicles[J]. Acta Armamentarii, 2012, 33(10): 1210-1216 (in Chinese). 傅莉, 王晓光. 无人战机近距空战微分对策建模研究[J].兵工学报, 2012, 33(10): 1210-1216.
[3] Wang L Y, Zhang H G, Xu H J. Multi-index synthesize evaluation model based on rough set theory for air combat efficiency[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 880-885 (in Chinese). 王礼沅, 张恒喜, 徐浩军. 基于粗糙集的空战效能多指标综合评估模型[J].航空学报, 2008, 29(4): 880-885.
[4] Kaplan J A, Chappell A R, McManus J W. The analysis of a generic air-to-air missile simulation model, ADA109057[R]. Washington, D.C.: NASA, 1994.
[5] Valerio S M. Probability of kill for VLA asroc torpedo launch[D]. Monterey, California: Naval Postgraduate School, 2009.
[6] Chen X, Liu M, Hu Y X. Study on UAV offensive /defensive game strategy based on uncertain information[J]. Acta Armamentarii 2012, 33(12): 1510-1515 (in Chinese). 陈侠, 刘敏, 胡永新. 基于不确定信息的无人机攻防博弈策略研究[J].兵工学报, 2012, 33(12): 1510-1515.
[7] Kaneshige J, Krishnakumar K, Shung F. Tactical maneuvering using immunized sequence selection, AIAA-2003-6640[R]. Reston: AIAA, 2003.
[8] Mittal S, Doyle M J, Watz E. Detecting intelligent agent behavior with environment abstraction in complex air combat systems[C]//Proceedings of 2013 IEEE International Systems Conference. Piscataway, NJ: IEEE Press, 2013: 662-670.
[9] Bennett Jr W, Schreiber B T, Andrews D H. Developing competency-based methods for near-real-time air combat problem solving assessment[J]. Computers in Human Behavior, 2002, 18(6): 773-782.
[10] Moore J T. Finite state machines for creating, evaluating, and refining air-to-air combat tactics, ADA490111[R]. Laurel, Maryland: Johns Hopkins University Applied Physics Laboratory, 2008.
[11] Huang C Q, Hu J, Cai J. Variable precision rough set decision-making method for situation assessment of UCAV[J]. Systems Engineering and Electronics. 2011,5(5): 1045-1050 (in Chinese). 黄长强, 胡杰, 蔡佳. 无人战斗机态势评估变精度粗集决策方法[J].系统工程与电子技术,2011, 33(5): 1045-1050.
[12] Zhang T, Yu L, Zhou Z L, et al. Decision-making for air combat maneuvering based on hybrid algorithm[J]. Systems Engineering and Electronics, 2013, 35(7): 1445-1450 (in Chinese). 张涛, 于雷, 周中良, 等. 基于混合算法的空战机动决策[J].系统工程与电子技术, 2013, 35(7): 1445-1450.
[13] Xue Y, Zhuang Y, Zhang Y Y, et al.Multiple UCAV cooperative jamming air combat decision making based on heuristic self-adaptive discrete differential algorithm[J]. Acta Aeronautica et Astronautica Sinca, 2013, 34(2): 343-351 (in Chinese). 薛羽, 庄毅, 张友益, 等. 基于启发式自适应离散差分进化算法的多UCAV协同干扰空战决策[J].航空学报,2013, 34(2): 343-351.
[14] Veerasamy N. A high-level mapping of cyberterrorism to the OODA loop[C]//Proceedings of 5th European Conference on Information Management and Evaluation. Sonning Common, UK: ACPI, 2011: 352-360.
[15] Gong M G, Wang S, Ma M, et al. Two-phase clustering algorithm for complex distributed data[J]. Journal of Software, 2011, 22(11): 2760-2772 (in Chinese). 公茂果, 王爽, 马萌, 等. 复杂分布数据的二阶段聚类算法[J].软件学报, 2011, 22(11): 2760-2772.
[16] Chen D F, Zhang L. Intuitionistic fuzzy identification of air attack target type[J]. Control and Decision, 2011, 26(7): 1046-1050 (in Chinese). 陈东锋, 张磊. 空袭目标类型的直觉模糊识别[J]. 控制与决策, 2011, 26(7): 1046-1050.
[17] Liu J F, Hu Q H, Yu D. A weighted rough set based method developed for class imbalance learning [J]. Information Sciences, 2008, 178(4): 1235-1256. |