新一代超声速客机总体气动技术挑战与发展展望(超声速民机专刊)

  • 李军府 ,
  • 赵彦 ,
  • 王伟 ,
  • 谢露 ,
  • 张辉 ,
  • 王龙 ,
  • 袁麟 ,
  • 谭玉婷 ,
  • 宁宇 ,
  • 艾俊强
展开
  • 1. 中航工业第一飞机设计研究院
    2. 中航工业第一飞机设计研究所
    3. 航空工业第一飞机设计研究院

收稿日期: 2025-04-02

  修回日期: 2025-06-08

  网络出版日期: 2025-06-10

Overall Aerodynamic Technology Challenges and Development Prospects for the Next-Generation Supersonic Transport

  • LI Jun-Fu ,
  • ZHAO Yan ,
  • WANG Wei ,
  • XIE Lu ,
  • ZHANG Hui ,
  • WANG Long ,
  • YUAN Lin ,
  • TAN Yu-Ting ,
  • NING Yu ,
  • AI Jun-Qiang
Expand

Received date: 2025-04-02

  Revised date: 2025-06-08

  Online published: 2025-06-10

摘要

超声速客机能够在航线上长时间以高于声速的速度飞行,可将亚声速客机执飞远距离航班的飞行时间缩短一半以上,有效改善旅程舒适性。因而,绿色高效的超声速客机再次成为民用航空领域的研究热点。本文首先简要回顾了超声速客机的发展历程,随后重点综述了超声速客机投入运营亟待解决的总体气动方面的技术挑战,包括多学科设计优化技术、飞发一体化设计技术、外部视景融合式驾驶舱设计技术、低声爆设计技术、声爆抑制技术、超声速巡航减阻技术和声爆风洞试验技术,最后对超声速客机关键技术的发展方向进行了探讨。

本文引用格式

李军府 , 赵彦 , 王伟 , 谢露 , 张辉 , 王龙 , 袁麟 , 谭玉婷 , 宁宇 , 艾俊强 . 新一代超声速客机总体气动技术挑战与发展展望(超声速民机专刊)[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32069

Abstract

Supersonic airliner can fly at speeds exceeding the speed of sound for extended periods along flight routes, reduc-ing the flight time of long-haul flights operated by subsonic airliner by more than half and significantly improving journey comfort. Therefore, green and efficient supersonic airliner has once again become a research hotspot in the civil aviation field. This paper first briefly reviews the development history of supersonic airliner. It then focuses on summarizing the technical challenges in the overall aerodynamics that need to be addressed for the operational deployment of supersonic airliner, including multidisciplinary design optimization technology, integrated airframe-propulsion system design technology, external vision fusion cockpit design technology, low sonic boom design technology, sonic boom suppression technology, supersonic cruise drag reduction technology, and sonic boom wind tunnel test technology. Finally, it discusses the development directions of key technologies for supersonic air-liner.

参考文献

[1] SUMIT S, LUKE B. Boeing's concorde competitor: the 2707 - why was it canceled?[EB/OL]. (2023-10-14)[2025-1-26]. https://simpleflying.com/boeing-2707-cancelled/. [2] FITZ S R, Roensch R. Advanced supersonic transport[R]. SAE Technical Paper 750617, 1975. [3] CHRIS L. The Lockheed L-2000: the 250 seat superson-ic passenger plane that never was.[EB/OL]. (2021-3-5)[2025-1-26]. https://simpleflying.com/the-lockheed-l-2000-the-250-seat-supersonic-passenger-plane-that-never-was/. [4] CAPTAIN M B. Comcorde 50 years supersonic speed bird—the full story [M]. Mortons, 2018. [5] 高培仁.民用飞机设计参考机种之一图-144超音速运输机[J].民用飞机设计与研究, 2015(3):4. GAO P R. One of the reference aircraft types for civil aircraft design: Tu-144 supersonic transport[J]. Civil Aircraft Design & Research, 2015(3):4(in Chinese). [6] WILHITE A W, SHAW R J. An overview of NASA’s High-Speed Research Program[C]. ICAS 2000 CONGRESS, 2000. [7] Boeing Commercial Airplanes New Airplane Develop-ment. High-speed civil transport study[R]. NASA Con-tractor Report 4233, 1989. [8] GREEN P K, PACULL M, REIMERS H D. Euro-pean 2nd generation supersonic commercial transport air-craft[C]//Proceedings of the 20th International Congress of the Aeronautical Sciences. Sorrento: ICAS, 1996. [9] YAMAKAMI K, NAKAHASHI K, OBAYASHI S. Aerodynamic design and CFD evaluation of a high speed commercial transport: NAL SP-34[R]. Tokyo: Na-tional Aerospace Laboratory, 1997. [10] Gulfstream Aerospace Corporation. An overview of the gulfstream supersonic technology program[EB/OL]. (2009-3-1)[2025-1-26]. https://www.faa.gov/sites/faa.gov/files/about/office_org/headquar-ters_offices/apl/palm_springs_symposium_gulfstream.pdf. [11] JOANNA B. LA to Tokyo in 5 hours: inside the Spike S-512 supersonic jet[EB/OL]. (2021-3-5)[2025-1-26]. https://simpleflying.com/spike-supersonic-inside/. [12] STEPHEN T. SAI resurrects QSST-X as all-first class supersonic airliner, seeks investors[EB/OL]. (2013-6-12)[2025-1-26]. https://www.flightglobal.com/sai-resurrects-qsst-x-as-all-first-class-supersonic-airliner-seeks-investors/110088.article. [13] FlyRadius. Aerion AS2 supersonic business jet[EB/OL]. (2021-3-18)[2025-1-26]. https://www.flyradius.com/aerion-as2. [14] 邓双国,额日其太.日本开展超声速运输机研究[J].国际航空, 2010(6):3. DENG S G, ER R Q T. JAXA develops supersonic transport aircraft[J]. INTERNATIONAL AVIATION, 2010(6):3(in Chinese). [15] SAMANTHA M. NASA's X-59 quiet supersonic jet looks ready to fly in new photos[EB/OL]. (2023-7-8)[2025-1-26]. https://www.space.com/nasa-x-59-quiet-supersonic-jet-photos. [16] KATE D. Boom technology’s supersonic test jet breaks sound barrier for first time[EB/OL]. (2025-1-28)[2025-1-28]. https://www.latimes.com/business/story/2025-01-28/boom-technologys-supersonic-test-jet-breaks-sound-barrier-for-first-time. [17] 余雄庆.飞机总体多学科设计优化的现状与发展方向[J]. 南京航空航天大学学报, 2008, 40(4): 417-426. YU X Q. Multidisciplinary design optimization for air-craft conceptual and preliminary design: status and direc-tions [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 417-426. (in Chinese) [18] WALSH J L, TOWNSEND J C, SALAS A O, et al. Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles, part 1: formulation: AIAA 2000-0418[R]. Reno, NV: AIAA, 2000. [19] WALSH J L, Weston R P, Samareh J A, et al. Multidisci-plinary high-fidelity analysis and optimization of aero-space vehicles, part 2: preliminary results: AIAA 2000-0419[R]. Reno, NV: AIAA, 2000. [20] KROO I, MANNING V. Collaborative optimization - Status and directions: AIAA 2000-4721[R]. Long Beach, CA: AIAA, 2000. [21] MACMILLIN P E, GOLOVIDOV O, MASON W H, et al. An MDO investigation of the impact of practical con-straints on an HSCT configuration: AIAA 97-0098[R]. Reno, NV: AIAA, 1997. [22] HOSDER S, WATSON L T, GROSSMAN B. Polyno-mial response surface approximations for the multidisci-plinary design optimization of a high speed civil transport [J]. Optimization and Engineering, 2001, 2:431–452. [23] DELAURENTIS D A, MAVRIS D N. Uncertainty modeling and management in multidisciplinary analysis and synthesis: AIAA 2000-0422[R]. Reno, NV: AIAA, 2000. [24] FENWICK S V, HARRIS J C, DEAN S R H. Multi-disciplinary optimisation to assess the impact of cruise speed on HSCT performance: AIAA 2004-4538[R]. Al-bany, NY: AIAA, 2004. [25] LABAN M, HERRMANN U. Multi-disciplinary analy-sis and optimisation applied to supersonic aircraft Part 1: Analysis Tools: AIAA 2007-1857[R]. Honolulu, Hawaii: AIAA, 2007. [26] CHUERMANN M, GAFFURI M, HORST P. Multidis-ciplinary pre-design of supersonic aircraft[J]. CEAS Aeronautical Journal, 2015, 6:207–216. [27] MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Final report for the advanced concept studies for supersonic commercial transports entering service in the 2030 to 2035 Period, N+3 Supersonic Program: NASA-CR 2010-216796[R]. Alexandria, VA, 2010. [28] WELGE H R, BONET J, MAGEE T, et al. N+3 Ad-vanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Pe-riod: NASA-CR 2011-217084[R]. Hanover, MD, 2011. [29] CHOI S, ALONSO J J, KROO I M. Multifidelity de-sign optimization of low-boom supersonic jets[J]. Jour-nal of Aircraft, 2008, 45(1):106-118. [30] SUN Y, SMITH H. Low-boom low-drag optimization in a multidisciplinary design analysis optimization environ-ment[J]. Aerospace Science and Technology, 2019, 94:105387. [31] LI W, GEISELHART K. Multidisciplinary design opti-mization of low-boom supersonic aircraft with mission constraints. AIAA Journal, 2021, 59(1): 165-179. [32] LI W, GEISELHART K. Multi-objective, multidiscipli-nary optimization of low-boom supersonic transports us-ing multifidelity models. Journal of Aircraft, 2022, 59(5):1137-1151. [33] LI W, GEISELHART K. Integration of low-fidelity MDO and CFD-based redesign of low-boom supersonic transports[J]. AIAA Journal, 2021, 59(10): 3923-3936. [34] 单程军, 贡天宇, 易理哲, 等.超声速民机高效高可信度声爆/气动多学科优化方法[J].航空学报, 2024, 45(24): 630573. SHAN C J, GONG T Y, YI L Z, et al. High-efficiency and high-reliability sonic boom/aerodynamic multidisci-plinary optimization method for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630573(in Chinese). [35] HOWE, DONALD C. Engine placement for sonic boom mitigation[C].2002. [36] UENO A, WATANABE Y. Propulsion/airframe Integra-tion Considering Low Drag and Low Sonic Boom[C]//29th Congress of the International Council of the Aeronautical Sciences. 2014. [37] SLATER J W. Methodology for the design of streamline-traced external-compression supersonic inlets[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2014: 3593. [38] OTTO S E, Trefny C J, Slater J W. Inward-turning streamline-traced inlet design method low-boom low-drag applications[J]. Journal of Propulsion & Pow-er,2016,32(5):1-12. [39] HEATH C M, SLATER J W, RALLABHANDI S K. Inlet trade study for a low-boom aircraft demonstrator[J]. Journal of Aircraft, 2017, 54(4): 1283-1293. [40] 李博,梁德旺.无隔道超声速进气道/前机身一体化计算与试验[J]. 航空学报, 2009, 30(9):1597-1604. LI B, LIANG D. Numerical simulation and experiment of integral flow field of diverterless supersonic in-let/forebody[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1597-1604(in Chinese). [41] SCHARNHORST R. An overview of military aircraft supersonic inlet aerodynamics[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012: 13. [42] 杨应凯.枭龙飞机Bump进气道设计[J].南京航空航天大学学报,2007,39(4). YANG Y K. Design of bump inlet of Thunder/JF-17 air-craft[J]. Journal of Nanjing University of Aeronautics & Astro-nautics,2007,39(4)(in Chinese). [43] 杨应凯.Bump进气道设计与试验研究[J].空气动力学学报,2007,25(3). YANG Y K. The research of bump inlet design an test[J]. Acta Aerodynamic Sinica,2007,25(3)(in Chinese). [44] CHANDLER F O, MONTES R. A CFD investigation of a diverterless supersonic inlet of ellipsoidal entrance shape[C]//AIAA Propulsion and Energy 2019 Forum. 2019: 4274. [45] 王 娇,谭慧俊,黄河峡.Bump进气道中鼓包诱导的激波/边界层干扰特性[J].航空动力学报,2018,33(1). WANG J, TAN H J, HUANG H X. Shock wave/boundary layer interactions induced by bump in the bump inlet[J]. Journal of Aerospace Power, 2018,33(1)(in Chinese). [46] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2):626310. DING Y L, HAN Z H, QIAO J L, et al. Research pro-gress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2):626310(in Chinese). [47] SUN Y, SMITH H. Review and prospect of supersonic business jet design [J].Progress in Aerospace Sciences, 2017,90:12-38. [48] BRUCE W E, CARTER M B, ELMILIGUI A A, et al. Computational and experimental study of supersonic nozzle flow and aft-deck interactions[C]//54th AIAA Aerospace Sciences Meeting. 2016: 2034. [49] 刘中臣, 钱战森, 李雪飞, 等. 发动机喷管羽流对近场声爆特性影响的风洞试验技术[J]. 航空学报, 2023, 44(2):626952. LIU Z C, QIAN Z S, LI X F, et al. Wind tunnel test techniques for exhaust nozzle plume effects on nearfield sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626952(in Chinese). [50] Jarrett D N. 座舱工程[M]. 孔渊,曲卡尔, 译. 北京: 航空工业出版社,2015. Jarrett D N. Cockpit engineering[M]. KONG Y, QU K E, translated. Beijing: Aviation Industry Press, 2015(in Chi-nese). [51] Patrick Carter. Lindergh Inspiration [J]. Plane and Pilot, 2012(8): 60-62. [52] Han Z H, Qiao J L, Zhang L W, et al. Recent progress of efficient low-boom design and optimization methods[J]. Progress in Aerospace Sciences, 2024, 146: 101007. [53] Ding Y L, Han Z H, Qiao J L, et al. Inverse design method for low-boom supersonic transport with lift con-straint[J]. AIAA Journal, 61 (7) (2023) 2840–2953. [54] KIRZ J. Surrogate based shape optimization of a low boom fuselage wing configuration[C]//AIAA Aviation 2019 Forum. 2019: 3489. [55] PLOTKIN K, HAERING E, MURRAY J D, et al. Ground data collection of shaped sonic boom experiment aircraft pressure signatures[C]// 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005. [56] HONDA M, YOSHIDA K. D-SEND#2 flight demon-stration for low sonic boom design technology[C]//29th Congress of the International Council of the Aeronautical Sciences, 2016. [57] ORDAZ I, LI W. Using CFD surface solutions to shape sonic boom signatures propagated from off-body pres-sure[C]//31st AIAA Applied Aerodynamics Conference, 2013. [58] JONES L B. Lower bounds for sonic bangs[J]. The Aeronautical Journal, 1961, 65(606): 433-436. [59] JONES L B. Lower bounds for sonic bangs in the far field[J]. The Aeronautical Quarterly, 1967, 18(1): 1-21. [60] JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. The Aeronautical Quarterly, 1970, 21(1): 1-17. [61] GEORGE A R, Lower bounds for sonic booms in the midfield, AIAA Journal. 1969,7(8): 1542-1545. [62] SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651. [63] SEEBASS R, GEORGE A R. Sonic-boom minimiza-tion[J]. The Journal of the Acoustical Society of America, 1972, 51(2C): 686-694. [64] DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation[R]. NASA TP-1348, 1979. [65] 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计方法[M]. 科学出版社. HAN Z H, QIAN Z S, QIAO J L. Sonic boom predic-tion and low-boom design methods[M]. Science Press(in Chinese). [66] Plotkin K, Rallabhandi S, Li W. Generalized formulation and extension of sonic boom minimization theory for front and aft shaping[C]// AIAA-2009-1052, Reston, VA: AIAA, 2009. [67] Haas A, Kroo I. A multi-shock inverse design method for low-boom supersonic aircraft[C]// AIAA-2010-0843. Reston, VA: AIAA, 2010. [68] Leatherwood J D, Sullivan B M, Shepherd K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1): 586-598. [69] Pawlowski J, Graham D, Boccadoro C, et al. Origins and overview of the shaped sonic boom demonstration program[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 5. [70] Plotkin K, Page J, Graham D, et al. Ground measure-ments of a shaped sonic boom[C]//10th AIAA/CEAS Aeroacoustics Conference. 2004: 2923. [71] Aftosmis M, Nemec M, Cliff S, Adjoint-based low-boom design with Cart3D[C]//29th AIAA Applied Aero-dynamics Conference. 2011: 3500. [72] Li W, Shields E, Geiselhart K. Mixed-fidelity approach for design of low-boom supersonic aircraft[J]. Journal of Aircraft, 2011,48 (4): 1131–1135. [73] Li W, Shields E. Generation of parametric equivalent-area targets for design of low-boom supersonic concepts[C]// 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011. [74] Ding Y L, Han Z H, Qiao J L, et al. Inverse design method for low-boom supersonic transport with lift con-straint[J]. AIAA Journal, 2023, 61(7). 2840-2853. [75] Nadarajah S K, Jameson A, Alonso J. An adjoint method for the calculation of remote sensitivities in supersonic flow[J]. International Journal of Computational Flu-id Dynamics, 2006, 20(2): 61-74. [76] Nadarajah S K, Jameson A, Alonso J. Sonic boom re-duction using an adjoint method for wing-body configu-rations in supersonic flow[C]//9th AIAA/ISSMO sym-posium on multidisciplinary analysis and optimization. 2002: 5547. [77] Rallabhandi S. Sonic boom adjoint methodology and its applications[C]//29th AIAA Applied Aerodynamics Con-ference. 2011: 3497. [78] Rodriguez D L, Aftosmis M J, Nemec M, et al. Adjoint-based minimization of X-59 sonic boom noise via control surfaces[C]//AIAA Aviation 2021 Forum. 2021: 3030. [79] Rallabhandi S K, Nielsen E J, Diskin B. Sonic-boom mitigation through aircraft design and adjoint methodolo-gy[J]. Journal of Aircraft, 2014, 51(2): 502-510. [80] Lukaczyk T, Palacios F, Alonso J. Response surface methodologies for low-boom supersonic aircraft design using equivalent area distributions[C]//12th AIAA Avia-tion Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2012: 5705. [81] Ban N, Yamazaki W, Kusunose K. Low-boom/low-drag design optimization of innovative supersonic transport configuration[J]. Journal of Aircraft, 2018, 55(3): 1071-1081. [82] Kirz J. Surrogate-based low-boom low-drag nose design for the JAXA S4 supersonic airliner[C]//AIAA SciTech 2022 Forum. 2022: 0706. [83] 乔建领. 超声速民机高可信度声爆预测与低声爆优化设计方法研究[D]. 西北工业大学, 西安, 2024. QIAO J L. Research on High-Fidelity Sonic Boom Pre-diction and Low-Boom Optimization Design Methods for Supersonic Civil Aircraft[D]. Northwestern Poly-technical University, Xi'an, 2024(in Chinese). [84] Cheng S I. Device for sonic boom reduction and improv-ing aircraft performance: US patent 3,737,119[P]. 1973-6-5. [85] Beaulieu W, Brovkin V. Microwave plasma influence on aerodynamic characters of body in airflow [R]. 2nd Weakly Ionized Gases Workshop, 1998. [86] Exton R J, Balla R J. On board projection of microwave plasma upstream of a Mach 6 bow shock [J]. Physics of Plasma, 2001, 8(11):5013-5017. [87] Sohail H Z, Shneider M N, Mansfield D K. Influence of upstream pulsed energy deposition on a shockwave structure in supersonic flow [R]. AIAA-2002-2703, 2002. [88] Zaidi S H, Shneider M N. Shock wave mitigation through off body pulsed energy deposition [J]. AIAA Journal, 2004, 42(2):326-331. [89] 冯晓强.超声速客机低声爆机理及设计方法研究[D]. 西北工业大学, 西安, 2014. FENG X Q. Research on the mechanism and design methods of low sonic boom for supersonic passenger aircraft [D]. Northwestern Polytechnical University, Xi'an, 2014(in Chinese). [90] 张力文, 韩忠华, 宋文萍. 一种基于吹吸气流动控制的超声速飞机声爆抑制方法[P]. CN112550678A, 2021-03-26. ZHANG L W, HAN Z H, SONG W P. A sonic boom mitigation method for supersonic aircraft based on blow-ing and suction flow control [P]. CN112550678A, 2021-03-26(in Chinese). [91] Ye L Q, Ye Z Y, Ye K, et al. A low-boom and low-drag design method for supersonic aircraft and its applications on airfoils[J]. Advances in Aerodynamics, 2021, 3: 1-27. [92] 贾苜梁, 陈树生, 曾品棚, 等.基于逆向喷流控制的声爆主动抑制技术[C]//第六届中国航空科学技术大会论文集. 2023. JIA M L, CHEN S S, ZENG P P, et al. Active control technology for reducing sonic boom based on reverse jet flow control[C]//Proceedings of the 6th China Aviation Science and Technology Conference. 2023(in Chinese). [93] 张力文,宋文萍,韩忠华,等. 声爆产生,传播和抑制机理研究进展[J].航空学报, 2022, 43(12):025649. ZHANG L W, SONG W P, HAN Z H, et al. Recent pro-gress of sonic boom generation, propagation, and mitiga-tion mechanism[J]. Act Aeronautica et Astronautica Sini-ca, 2022, 43(12): 025649(in Chinese). [94] BATDORF S B. Alleviation of the sonic boom by ther-mal means[J]. Journal of Aircraft, 1972, 9(2), 150-156. [95] MARCONI F, BOWERSOX R D, SCHETZ J A. Sonic boom alleviation using keel configurations[J]. Journal of Aircraft, 2003, 40(2): 363-369. [96] Henne P A, Howe D C, Wolz R R. Supersonic aircraft with spike for controlling and reducing sonic boom[P]. US Patent US6698684, 2003. [97] Simmons III F, Freund D. Morphing concept for quiet supersonic jet boom mitigation[C]//43rd AIAA Aero-space Sciences Meeting and Exhibit. 2005. [98] Smolka J, Cowert R, Molzahn L. Flight testing of the Gulfstream Quiet Spike ? on a NASA F-15B[R]. NASA TD2007003280. [99] Henne P, Howe D, Wolz R, et al. Supersonic aircraft with spike for controlling and reducing sonic boom: US, US6698684 B1[P]. 2014. [100] Howe D, Simmons III F, Freund D. Development of the Gulfstream Quiet Spike? for sonic boom minimiza-tion[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008. [101] Howe D. Improved sonic boom minimization with ex-tendable nose spike[C]// 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. [102] Cowart R, Grindle T. An overview of the Gulf-stream/NASA Quiet Spike? flight test program[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008. [103] Smolka J, Cowert R, Molzahn L. Flight testing of the Gulfstream Quiet Spike ? on a NASA F-15B[R]. NASA TD2007003280. [104] Ozcer I A, Kandil O A, Yagiz B. Parametric study and effect of nose-piece attachment on sonic boom mitiga-tion[C]. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Vol. 1, AIAA 2007-1243, pp 1-11, 2007. [105] Ozcer I A, Kandil O A, Design optimization of nose geometry of F-5E aircraft for sonic boom mitigation[C]. 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlan-do, Florida, Vol. 1, AIAA 2009-1053, pp 1-14, 2009 [106] Zhang L W, Han Z H, Qiao J L, et. al. A rapid design method for quiet spike of supersonic transport aircraft[C]. ICAS 2021. [107] Li Z, Chen S, Che S, et al. Investigations on sonic boom mitigation effect for supersonic transport based on quiet spike[C]//Asia-Pacific International Symposium on Aer-ospace Technology. Singapore: Springer Nature Singa-pore, 2023: 457-472. [108] 张力文,韩忠华,宋文萍,等.一种针对超声速民机的广义静音锥气动布局构型[P]. CN114435580A, 2025-01-26. Zhang L W, Han Z H, Song W P, et al. A generalized si-lent cone aerodynamic configuration for supersonic civil aircraft[P]. CN114435580A, 2025-01-26(in Chinese). [109] Ferri A. Airplane configurations for low sonic boom[R]. NASA SP-255, 1970. Washington, DC. [110] Durston D , Wolter J , Shea P R ,et al.X-59 Sonic Boom Test Results from the NASA Glenn 8- by 6-Foot Super-sonic Wind Tunnel[J].AIAA AVIATION 2023 Forum, 2023. [111] 范杰,韩忠华,乔建领,等.超声速民机机动飞行的聚焦声爆全场预测方法研究[J].宇航学报, 2024, 45(10):1538-1551. FAN J, HAN Z H, QIAO J L, et al. Method of full-field focused boom prediction for civiul transport in maneu-vers[J]. Journal of Astronautics, 2024, 45(10): 1538-1551(in Chinese). [112] MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom: Six decades of research: NASA/SP-2014-622[R]. Washington, D. C.: NASA, 2014. [113] Perley R, et al. Design and demonstration of a system for routine, boomless supersonic flights[R]. National Tech-nical Information Service, 1977. [114] SUN Y and SIMITH H. Design and operational assess-ment of a low-boom low-drag supersonic business jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(1): 82-95. [115] Vermeersch O, Yoshida K, Ueda Y, et al. Natural laminar flow wing for supersonic conditions: Wind tunnel exper-iments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79: 64-91. [116] Sun Y, Smith H. Review and prospect of supersonic business jet design[J]. Progress in Aerospace Sciences, 2017, 90: 12-38. [117] Thibert J J, Arnal D. A review of ONERA aerodynamic research in support of a future supersonic transport air-craft[J]. Progress in Aerospace Sciences, 2000, 36(8): 581-627. [118] Masuda K, Yoshida K. Improving the lift to drag charac-teristics of SST[C]//Aircraft Design and Operations Meeting. 1991: 3105. [119] Ishikawa H, Ueda Y, Tokugawa N. Natural laminar flow Wing design for a low-boom supersonic aircraft[C]//55th AIAA Aerospace Sciences Meeting. 2017: 1860. [120] ISHIKAWA H, TOKUGAWA N, UEDA Y, et al. Natu-ral laminar flow wing design of supersonic transport at high Reynolds number condition[C]//29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia. 2014. [121] Sturdza P. Extensive supersonic natural laminar flow on the Aerion business jet[C]//45th AIAA Aerospace Sci-ences Meeting and Exhibit. 2007: 685. [122] Garzon A, Matisheck J. Supersonic testing of natural laminar flow on sharp leading edge airfoils. Recent Ex-periments by Aerion Corporation[C]//42nd AIAA Flu-id Dynamics Conference and Exhibit. 2012: 3258. [123] Lynde M N, Campbell R L. Expanding the natural lami-nar flow boundary for supersonic transports[C]//34th AIAA Applied Aerodynamics Conference. 2016: 4327. [124] Owens L R, Beeler G, King R, et al. Supersonic Cross-flow Transition Control in Ground and Flight Tests[C]//AIAA Scitech 2019 Forum. 2019: 1651. [125] Owens L R, Beeler G, King R, et al. Supersonic travel-ing crossflow wave characteristics in ground and flight tests[C]//AIAA Scitech 2020 Forum. 2020: 0777. [126] Iuliano E, Quagliarella D, Donelli R S, et al. Design of a supersonic natural laminar flow wing-body[J]. Journal of aircraft, 2011, 48(4): 1147-1162. [127] Iuliano E, Salah El Din I, Donelli R, et al. Natural lami-nar flow design of a supersonic transport jet wing body[C]//47th AIAA Aerospace Sciences Meeting in-cluding The New Horizons Forum and Aerospace Expo-sition. 2009: 1279. [128] Bushnell D. Supersonic aircraft drag reduction[C]//21st Fluid Dynamics, Plasma Dynamics and Lasers Confer-ence. 1990. [129] Matsushima K, Maruyama D, Kusunose K, et al. Exten-sion of busemann biplane theory to three dimensional wing fuselage configurations[C]//Proceedings of the 27th ICAS Congress, ICAS Paper. 2010, 2(1). [130] Kusunose K, Matsushima K, Maruyama D. Supersonic biplane—A review[J]. Progress in Aerospace Sciences, 2011, 47(1): 53-87. [131] Yamazaki W, Kusunose K. Biplane-wing/twin-body-fuselage configuration for innovative supersonic transport[J]. Journal of Aircraft, 2014, 51(6): 1942-1952. [132] 李占科,张翔宇,冯晓强,等. 超声速双层翼翼型的阻力特性研究[J]. 应用力学学报, 2014, 31(4): 483-488. LI Z K, ZHANG X Y, FENG X Q, et al. The study on the drag characteristic of supersonic biplane[J]. CHINESE JOURNAL OF APPLIED MECHANICS, 2014, 51(6): 1942-1952(in Chinese). [133] 朱宝柱,武洁,李伟杰,等.Busemann 双翼流动壅塞及减阻数值模拟[J].现代应用物理, 2014, 5(4):303-309. ZHU B Z, WU J, LI W J, et al. Numerical simulation of busemann biplane choked flow and drag reduction[J]. MODERN APPLIED PHYSICS, , 2014, 5(4):303-309(in Chinese). [134] ZHAI J, ZHANG C A, WANG F M, et al. Design of a new supersonic biplane[J]. Acta Astronautica, 2020, 175: 216-233. [135] 马博平.超声速低阻低声爆气动布局研究[D]. 西北工业大学, 2020. MA B P. Research on Supersonic Low-Drag and Low-Boom Aerodynamic Configuration[D]. Northwestern Polytechnical University(in Chinese). [136] Sklar A, Rusak Z. Busemann-sears-haack hybrid geome-tries applied toward supersonic commercial vehicles for improved wave drag performance[C]//AIAA Scitech 2020 Forum. 2020: 0752. [137] Rao H, Shi Y, Bai J, et al. Aerodynamic Optimiza-tion Design of Supersonic Wing Based on Discrete Ad-joint[J]. Aerospace, 2023, 10(5): 420. [138] Guan X. Supersonic wing-body wave drag co-ordinated optimisation based on FCE methodology[J]. The Aero-nautical Journal, 2014, 118(1209): 1359-1372. [139] Cheung S H, Edwards T A. Supersonic airplane design optimization method for aerodynamic performance and low sonic boom[J]. NASA. Langley Research Center, High-Speed Research: Sonic Boom, Volume 2, 1992. [140] 李立, 白俊强, 郭同彪, 等. 基于伴随方法的超声速客机机翼气动优化设计[J].西北工业大学学报, 2017, 35(5): 843-849. LI L, BAI J Q, GUO T B, et al. Aerodynamic optimiza-tion design of the supersonic aircraft based on discrete adjoint method[J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 843-849. [141] Mangano M, Martins J R R A. Multipoint aerodynamic shape optimization for subsonic and supersonic re-gimes[J]. Journal of Aircraft, 2021, 58(3): 650-662. [142] Kirz J. Surrogate-Based Low-Boom Low-Drag Nose Design for the JAXA S4 Supersonic Airlin-er[C]//AIAA SCITECH 2022 Forum. 2022: 0706. [143] Kiyici F, Aradag S. Design and optimization of a super-sonic business jet[C]//22nd AIAA Computational Flu-id Dynamics Conference. 2015: 3064. [144] Seraj S, Martins J R. Aerodynamic Shape Optimization of a Supersonic Transport Considering Low-Speed Sta-bility[C]//AIAA Scitech 2022 Forum. 2022: 2177. [145] Bons N, Martins J R R A, Mader C A, et al. High-fidelity aerostructural optimization studies of the aerion AS2 supersonic business jet[C]//AIAA Aviation 2020 Forum. 2020: 3182. [146] 刘中臣,钱战森,冷岩.声爆近场压力测量风洞试验技术研究进展[J].空气动力学学报,2019,37(04):636-645. LIU Z C, QIAN Z S, LENG Y. Review of recent pro-gress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. ACTA AERODYNAMICA SINICA, 2019, 37(04): 636-645(in Chinese). [147] EDGE P M, HUBBARD H H. Review of sonic-boom simulation devices and techniques[J]. Journal of the Acoustical Society of America,1972, 51: 722-7728. [148] MACK R J, KUHN N S. Determination of an extrapola-tion distance with pressure signatures measured at two to twenty span lengths from two low boom models[R]. NASA TM-2006-214524, 2006. [149] FERRI A, WANG H. Observations on problems related to experimental determination of sonic boom[R]. NASA SP-255, 1970. [150] CARLSON H W. An investigation of some aspects of the sonic boom by means of wind-tunnel measurements of pressures about several bodies of revolution at a Mach number of 2.01[R]. NASA TND-161, 1959. [151] MAKINO Y, NOGUCHI M. Sonic-boom research ac-tivities on unmanned scaled supersonic experimental air-plane[R]. AIAA Paper. [152] MORGENSTERN J M. How to accurately measure low sonic boom or model surface pressure in supersonic wind tunnels[C]//30th AIAA Applied Aerodynamics Conference. 2012: 3215. [153] MORGENSTER J M. Distortion correction of low sonic boom measurements in wind tunnels[C]//30th AIAA Ap-plied Aerodynamics Conference. 2012: 3216. [154] Durston D, Cliff S, Wayman T, et al. Near field sonic boom test on two low-boom configurations using multi-ple measurement techniques at NASA Ames[C]//29th AIAA Applied Aerodynamics Conference. 2011. [155] CLIFF S, ELMILIGGUI A, AFTOSMIS M, et al.Design and evaluation of a pressure rail for sonic boom measurement in wind tunnels[C]//7th International Conference on Computational Fluid Dynamics(ICCFD7). 2012. [156] CARLSON H W, MORRIS O A. Wind-tunnel sonic-boom testing techniques[J]. Journal of Aircraft. 1967,4(3):245-249. [157] Durston D, Elmiligui A, Cliff S, et al. Experimental and computational sonic boom assessment of Boeing N+ 2 low boom models[C]//32nd AIAA Applied Aerodynam-ics Conference. 2014. [158] 刘中臣,钱战森,冷岩,等. 声爆近场空间压力风洞测量技术[J].航空学报, 2020, 41(4):13. LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel meas-urement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):13(in Chinese). [159] Wilcox F J, Elmiligui A, Wayman T R, et al. Experi-mental sonic boom measurements on a Mach 1.6 Cruise Low-Boom Configuration[R]. NASA/TM-2012-217598. [160] 徐善劼.基于概率模型的声爆试验数据分析[D].南京航空航天大学,2022. XU S J. Data analysis of sonic boom test bases on prob-ability model[D]. Nanjing University of Aeronautics and Astronautics, 2022(in Chinese). [161] 杨洋,钱丰学,周波,等.暂冲式超声速风洞声爆试验平台建设进展[C]//第六届中国航空科学技术大会论文集.2023. YANG Y, QIAN F X, ZHOU B, et al. Construction pro-gress of sonic boom test platform in intermittent super-sonic wind tunnel[C]//Proceedings of the 6th China Avia-tion Science and Technology Conference. 2023(in Chi-nese). [162] 杨洋,钱丰学,张长丰,等.基于探针的声爆测量风洞试验技术研究[J].实验流体力学, 2023, 37(6):92-100. YANG Y, QIAN F X, ZHANG C F, et al. Research on wind tunnel test technology of sonic boom mneasure-ment based on probe[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6):92-100(in Chinese). [163] LIU Z, QIAN F, ZHANG Z, et al. Preliminary Study on Sonic Boom Measurement in Wind Tunnel Based on PIV Technique[C]//Proceedings of the 6th China Aero-nautical Science and Technology Conference. 2023.
文章导航

/