[1] SUMIT S, LUKE B. Boeing's concorde competitor: the 2707 - why was it canceled?[EB/OL]. (2023-10-14)[2025-1-26]. https://simpleflying.com/boeing-2707-cancelled/.
[2] FITZ S R, Roensch R. Advanced supersonic transport[R]. SAE Technical Paper 750617, 1975.
[3] CHRIS L. The Lockheed L-2000: the 250 seat superson-ic passenger plane that never was.[EB/OL]. (2021-3-5)[2025-1-26]. https://simpleflying.com/the-lockheed-l-2000-the-250-seat-supersonic-passenger-plane-that-never-was/.
[4] CAPTAIN M B. Comcorde 50 years supersonic speed bird—the full story [M]. Mortons, 2018.
[5] 高培仁.民用飞机设计参考机种之一图-144超音速运输机[J].民用飞机设计与研究, 2015(3):4.
GAO P R. One of the reference aircraft types for civil aircraft design: Tu-144 supersonic transport[J]. Civil Aircraft Design & Research, 2015(3):4(in Chinese).
[6] WILHITE A W, SHAW R J. An overview of NASA’s High-Speed Research Program[C]. ICAS 2000 CONGRESS, 2000.
[7] Boeing Commercial Airplanes New Airplane Develop-ment. High-speed civil transport study[R]. NASA Con-tractor Report 4233, 1989.
[8] GREEN P K, PACULL M, REIMERS H D. Euro-pean 2nd generation supersonic commercial transport air-craft[C]//Proceedings of the 20th International Congress of the Aeronautical Sciences. Sorrento: ICAS, 1996.
[9] YAMAKAMI K, NAKAHASHI K, OBAYASHI S. Aerodynamic design and CFD evaluation of a high speed commercial transport: NAL SP-34[R]. Tokyo: Na-tional Aerospace Laboratory, 1997.
[10] Gulfstream Aerospace Corporation. An overview of the gulfstream supersonic technology program[EB/OL]. (2009-3-1)[2025-1-26]. https://www.faa.gov/sites/faa.gov/files/about/office_org/headquar-ters_offices/apl/palm_springs_symposium_gulfstream.pdf.
[11] JOANNA B. LA to Tokyo in 5 hours: inside the Spike S-512 supersonic jet[EB/OL]. (2021-3-5)[2025-1-26]. https://simpleflying.com/spike-supersonic-inside/.
[12] STEPHEN T. SAI resurrects QSST-X as all-first class supersonic airliner, seeks investors[EB/OL]. (2013-6-12)[2025-1-26]. https://www.flightglobal.com/sai-resurrects-qsst-x-as-all-first-class-supersonic-airliner-seeks-investors/110088.article.
[13] FlyRadius. Aerion AS2 supersonic business jet[EB/OL]. (2021-3-18)[2025-1-26]. https://www.flyradius.com/aerion-as2.
[14] 邓双国,额日其太.日本开展超声速运输机研究[J].国际航空, 2010(6):3.
DENG S G, ER R Q T. JAXA develops supersonic transport aircraft[J]. INTERNATIONAL AVIATION, 2010(6):3(in Chinese).
[15] SAMANTHA M. NASA's X-59 quiet supersonic jet looks ready to fly in new photos[EB/OL]. (2023-7-8)[2025-1-26]. https://www.space.com/nasa-x-59-quiet-supersonic-jet-photos.
[16] KATE D. Boom technology’s supersonic test jet breaks sound barrier for first time[EB/OL]. (2025-1-28)[2025-1-28]. https://www.latimes.com/business/story/2025-01-28/boom-technologys-supersonic-test-jet-breaks-sound-barrier-for-first-time.
[17] 余雄庆.飞机总体多学科设计优化的现状与发展方向[J]. 南京航空航天大学学报, 2008, 40(4): 417-426.
YU X Q. Multidisciplinary design optimization for air-craft conceptual and preliminary design: status and direc-tions [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 417-426. (in Chinese)
[18] WALSH J L, TOWNSEND J C, SALAS A O, et al. Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles, part 1: formulation: AIAA 2000-0418[R]. Reno, NV: AIAA, 2000.
[19] WALSH J L, Weston R P, Samareh J A, et al. Multidisci-plinary high-fidelity analysis and optimization of aero-space vehicles, part 2: preliminary results: AIAA 2000-0419[R]. Reno, NV: AIAA, 2000.
[20] KROO I, MANNING V. Collaborative optimization - Status and directions: AIAA 2000-4721[R]. Long Beach, CA: AIAA, 2000.
[21] MACMILLIN P E, GOLOVIDOV O, MASON W H, et al. An MDO investigation of the impact of practical con-straints on an HSCT configuration: AIAA 97-0098[R]. Reno, NV: AIAA, 1997.
[22] HOSDER S, WATSON L T, GROSSMAN B. Polyno-mial response surface approximations for the multidisci-plinary design optimization of a high speed civil transport [J]. Optimization and Engineering, 2001, 2:431–452.
[23] DELAURENTIS D A, MAVRIS D N. Uncertainty modeling and management in multidisciplinary analysis and synthesis: AIAA 2000-0422[R]. Reno, NV: AIAA, 2000.
[24] FENWICK S V, HARRIS J C, DEAN S R H. Multi-disciplinary optimisation to assess the impact of cruise speed on HSCT performance: AIAA 2004-4538[R]. Al-bany, NY: AIAA, 2004.
[25] LABAN M, HERRMANN U. Multi-disciplinary analy-sis and optimisation applied to supersonic aircraft Part 1: Analysis Tools: AIAA 2007-1857[R]. Honolulu, Hawaii: AIAA, 2007.
[26] CHUERMANN M, GAFFURI M, HORST P. Multidis-ciplinary pre-design of supersonic aircraft[J]. CEAS Aeronautical Journal, 2015, 6:207–216.
[27] MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Final report for the advanced concept studies for supersonic commercial transports entering service in the 2030 to 2035 Period, N+3 Supersonic Program: NASA-CR 2010-216796[R]. Alexandria, VA, 2010.
[28] WELGE H R, BONET J, MAGEE T, et al. N+3 Ad-vanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Pe-riod: NASA-CR 2011-217084[R]. Hanover, MD, 2011.
[29] CHOI S, ALONSO J J, KROO I M. Multifidelity de-sign optimization of low-boom supersonic jets[J]. Jour-nal of Aircraft, 2008, 45(1):106-118.
[30] SUN Y, SMITH H. Low-boom low-drag optimization in a multidisciplinary design analysis optimization environ-ment[J]. Aerospace Science and Technology, 2019, 94:105387.
[31] LI W, GEISELHART K. Multidisciplinary design opti-mization of low-boom supersonic aircraft with mission constraints. AIAA Journal, 2021, 59(1): 165-179.
[32] LI W, GEISELHART K. Multi-objective, multidiscipli-nary optimization of low-boom supersonic transports us-ing multifidelity models. Journal of Aircraft, 2022, 59(5):1137-1151.
[33] LI W, GEISELHART K. Integration of low-fidelity MDO and CFD-based redesign of low-boom supersonic transports[J]. AIAA Journal, 2021, 59(10): 3923-3936.
[34] 单程军, 贡天宇, 易理哲, 等.超声速民机高效高可信度声爆/气动多学科优化方法[J].航空学报, 2024, 45(24): 630573.
SHAN C J, GONG T Y, YI L Z, et al. High-efficiency and high-reliability sonic boom/aerodynamic multidisci-plinary optimization method for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630573(in Chinese).
[35] HOWE, DONALD C. Engine placement for sonic boom mitigation[C].2002.
[36] UENO A, WATANABE Y. Propulsion/airframe Integra-tion Considering Low Drag and Low Sonic Boom[C]//29th Congress of the International Council of the Aeronautical Sciences. 2014.
[37] SLATER J W. Methodology for the design of streamline-traced external-compression supersonic inlets[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2014: 3593.
[38] OTTO S E, Trefny C J, Slater J W. Inward-turning streamline-traced inlet design method low-boom low-drag applications[J]. Journal of Propulsion & Pow-er,2016,32(5):1-12.
[39] HEATH C M, SLATER J W, RALLABHANDI S K. Inlet trade study for a low-boom aircraft demonstrator[J]. Journal of Aircraft, 2017, 54(4): 1283-1293.
[40] 李博,梁德旺.无隔道超声速进气道/前机身一体化计算与试验[J]. 航空学报, 2009, 30(9):1597-1604.
LI B, LIANG D. Numerical simulation and experiment of integral flow field of diverterless supersonic in-let/forebody[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1597-1604(in Chinese).
[41] SCHARNHORST R. An overview of military aircraft supersonic inlet aerodynamics[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012: 13.
[42] 杨应凯.枭龙飞机Bump进气道设计[J].南京航空航天大学学报,2007,39(4).
YANG Y K. Design of bump inlet of Thunder/JF-17 air-craft[J]. Journal of Nanjing University of Aeronautics & Astro-nautics,2007,39(4)(in Chinese).
[43] 杨应凯.Bump进气道设计与试验研究[J].空气动力学学报,2007,25(3).
YANG Y K. The research of bump inlet design an test[J]. Acta Aerodynamic Sinica,2007,25(3)(in Chinese).
[44] CHANDLER F O, MONTES R. A CFD investigation of a diverterless supersonic inlet of ellipsoidal entrance shape[C]//AIAA Propulsion and Energy 2019 Forum. 2019: 4274.
[45] 王 娇,谭慧俊,黄河峡.Bump进气道中鼓包诱导的激波/边界层干扰特性[J].航空动力学报,2018,33(1).
WANG J, TAN H J, HUANG H X. Shock wave/boundary layer interactions induced by bump in the bump inlet[J]. Journal of Aerospace Power, 2018,33(1)(in Chinese).
[46] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2):626310.
DING Y L, HAN Z H, QIAO J L, et al. Research pro-gress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2):626310(in Chinese).
[47] SUN Y, SMITH H. Review and prospect of supersonic business jet design [J].Progress in Aerospace Sciences, 2017,90:12-38.
[48] BRUCE W E, CARTER M B, ELMILIGUI A A, et al. Computational and experimental study of supersonic nozzle flow and aft-deck interactions[C]//54th AIAA Aerospace Sciences Meeting. 2016: 2034.
[49] 刘中臣, 钱战森, 李雪飞, 等. 发动机喷管羽流对近场声爆特性影响的风洞试验技术[J]. 航空学报, 2023, 44(2):626952.
LIU Z C, QIAN Z S, LI X F, et al. Wind tunnel test techniques for exhaust nozzle plume effects on nearfield sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626952(in Chinese).
[50] Jarrett D N. 座舱工程[M]. 孔渊,曲卡尔, 译. 北京: 航空工业出版社,2015.
Jarrett D N. Cockpit engineering[M]. KONG Y, QU K E, translated. Beijing: Aviation Industry Press, 2015(in Chi-nese).
[51] Patrick Carter. Lindergh Inspiration [J]. Plane and Pilot, 2012(8): 60-62.
[52] Han Z H, Qiao J L, Zhang L W, et al. Recent progress of efficient low-boom design and optimization methods[J]. Progress in Aerospace Sciences, 2024, 146: 101007.
[53] Ding Y L, Han Z H, Qiao J L, et al. Inverse design method for low-boom supersonic transport with lift con-straint[J]. AIAA Journal, 61 (7) (2023) 2840–2953.
[54] KIRZ J. Surrogate based shape optimization of a low boom fuselage wing configuration[C]//AIAA Aviation 2019 Forum. 2019: 3489.
[55] PLOTKIN K, HAERING E, MURRAY J D, et al. Ground data collection of shaped sonic boom experiment aircraft pressure signatures[C]// 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.
[56] HONDA M, YOSHIDA K. D-SEND#2 flight demon-stration for low sonic boom design technology[C]//29th Congress of the International Council of the Aeronautical Sciences, 2016.
[57] ORDAZ I, LI W. Using CFD surface solutions to shape sonic boom signatures propagated from off-body pres-sure[C]//31st AIAA Applied Aerodynamics Conference, 2013.
[58] JONES L B. Lower bounds for sonic bangs[J]. The Aeronautical Journal, 1961, 65(606): 433-436.
[59] JONES L B. Lower bounds for sonic bangs in the far field[J]. The Aeronautical Quarterly, 1967, 18(1): 1-21.
[60] JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. The Aeronautical Quarterly, 1970, 21(1): 1-17.
[61] GEORGE A R, Lower bounds for sonic booms in the midfield, AIAA Journal. 1969,7(8): 1542-1545.
[62] SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651.
[63] SEEBASS R, GEORGE A R. Sonic-boom minimiza-tion[J]. The Journal of the Acoustical Society of America, 1972, 51(2C): 686-694.
[64] DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation[R]. NASA TP-1348, 1979.
[65] 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计方法[M]. 科学出版社.
HAN Z H, QIAN Z S, QIAO J L. Sonic boom predic-tion and low-boom design methods[M]. Science Press(in Chinese).
[66] Plotkin K, Rallabhandi S, Li W. Generalized formulation and extension of sonic boom minimization theory for front and aft shaping[C]// AIAA-2009-1052, Reston, VA: AIAA, 2009.
[67] Haas A, Kroo I. A multi-shock inverse design method for low-boom supersonic aircraft[C]// AIAA-2010-0843. Reston, VA: AIAA, 2010.
[68] Leatherwood J D, Sullivan B M, Shepherd K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1): 586-598.
[69] Pawlowski J, Graham D, Boccadoro C, et al. Origins and overview of the shaped sonic boom demonstration program[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 5.
[70] Plotkin K, Page J, Graham D, et al. Ground measure-ments of a shaped sonic boom[C]//10th AIAA/CEAS Aeroacoustics Conference. 2004: 2923.
[71] Aftosmis M, Nemec M, Cliff S, Adjoint-based low-boom design with Cart3D[C]//29th AIAA Applied Aero-dynamics Conference. 2011: 3500.
[72] Li W, Shields E, Geiselhart K. Mixed-fidelity approach for design of low-boom supersonic aircraft[J]. Journal of Aircraft, 2011,48 (4): 1131–1135.
[73] Li W, Shields E. Generation of parametric equivalent-area targets for design of low-boom supersonic concepts[C]// 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011.
[74] Ding Y L, Han Z H, Qiao J L, et al. Inverse design method for low-boom supersonic transport with lift con-straint[J]. AIAA Journal, 2023, 61(7). 2840-2853.
[75] Nadarajah S K, Jameson A, Alonso J. An adjoint method for the calculation of remote sensitivities in supersonic flow[J]. International Journal of Computational Flu-id Dynamics, 2006, 20(2): 61-74.
[76] Nadarajah S K, Jameson A, Alonso J. Sonic boom re-duction using an adjoint method for wing-body configu-rations in supersonic flow[C]//9th AIAA/ISSMO sym-posium on multidisciplinary analysis and optimization. 2002: 5547.
[77] Rallabhandi S. Sonic boom adjoint methodology and its applications[C]//29th AIAA Applied Aerodynamics Con-ference. 2011: 3497.
[78] Rodriguez D L, Aftosmis M J, Nemec M, et al. Adjoint-based minimization of X-59 sonic boom noise via control surfaces[C]//AIAA Aviation 2021 Forum. 2021: 3030.
[79] Rallabhandi S K, Nielsen E J, Diskin B. Sonic-boom mitigation through aircraft design and adjoint methodolo-gy[J]. Journal of Aircraft, 2014, 51(2): 502-510.
[80] Lukaczyk T, Palacios F, Alonso J. Response surface methodologies for low-boom supersonic aircraft design using equivalent area distributions[C]//12th AIAA Avia-tion Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2012: 5705.
[81] Ban N, Yamazaki W, Kusunose K. Low-boom/low-drag design optimization of innovative supersonic transport configuration[J]. Journal of Aircraft, 2018, 55(3): 1071-1081.
[82] Kirz J. Surrogate-based low-boom low-drag nose design for the JAXA S4 supersonic airliner[C]//AIAA SciTech 2022 Forum. 2022: 0706.
[83] 乔建领. 超声速民机高可信度声爆预测与低声爆优化设计方法研究[D]. 西北工业大学, 西安, 2024.
QIAO J L. Research on High-Fidelity Sonic Boom Pre-diction and Low-Boom Optimization Design Methods for Supersonic Civil Aircraft[D]. Northwestern Poly-technical University, Xi'an, 2024(in Chinese).
[84] Cheng S I. Device for sonic boom reduction and improv-ing aircraft performance: US patent 3,737,119[P]. 1973-6-5.
[85] Beaulieu W, Brovkin V. Microwave plasma influence on aerodynamic characters of body in airflow [R]. 2nd Weakly Ionized Gases Workshop, 1998.
[86] Exton R J, Balla R J. On board projection of microwave plasma upstream of a Mach 6 bow shock [J]. Physics of Plasma, 2001, 8(11):5013-5017.
[87] Sohail H Z, Shneider M N, Mansfield D K. Influence of upstream pulsed energy deposition on a shockwave structure in supersonic flow [R]. AIAA-2002-2703, 2002.
[88] Zaidi S H, Shneider M N. Shock wave mitigation through off body pulsed energy deposition [J]. AIAA Journal, 2004, 42(2):326-331.
[89] 冯晓强.超声速客机低声爆机理及设计方法研究[D]. 西北工业大学, 西安, 2014.
FENG X Q. Research on the mechanism and design methods of low sonic boom for supersonic passenger aircraft [D]. Northwestern Polytechnical University, Xi'an, 2014(in Chinese).
[90] 张力文, 韩忠华, 宋文萍. 一种基于吹吸气流动控制的超声速飞机声爆抑制方法[P]. CN112550678A, 2021-03-26.
ZHANG L W, HAN Z H, SONG W P. A sonic boom mitigation method for supersonic aircraft based on blow-ing and suction flow control [P]. CN112550678A, 2021-03-26(in Chinese).
[91] Ye L Q, Ye Z Y, Ye K, et al. A low-boom and low-drag design method for supersonic aircraft and its applications on airfoils[J]. Advances in Aerodynamics, 2021, 3: 1-27.
[92] 贾苜梁, 陈树生, 曾品棚, 等.基于逆向喷流控制的声爆主动抑制技术[C]//第六届中国航空科学技术大会论文集. 2023.
JIA M L, CHEN S S, ZENG P P, et al. Active control technology for reducing sonic boom based on reverse jet flow control[C]//Proceedings of the 6th China Aviation Science and Technology Conference. 2023(in Chinese).
[93] 张力文,宋文萍,韩忠华,等. 声爆产生,传播和抑制机理研究进展[J].航空学报, 2022, 43(12):025649.
ZHANG L W, SONG W P, HAN Z H, et al. Recent pro-gress of sonic boom generation, propagation, and mitiga-tion mechanism[J]. Act Aeronautica et Astronautica Sini-ca, 2022, 43(12): 025649(in Chinese).
[94] BATDORF S B. Alleviation of the sonic boom by ther-mal means[J]. Journal of Aircraft, 1972, 9(2), 150-156.
[95] MARCONI F, BOWERSOX R D, SCHETZ J A. Sonic boom alleviation using keel configurations[J]. Journal of Aircraft, 2003, 40(2): 363-369.
[96] Henne P A, Howe D C, Wolz R R. Supersonic aircraft with spike for controlling and reducing sonic boom[P]. US Patent US6698684, 2003.
[97] Simmons III F, Freund D. Morphing concept for quiet supersonic jet boom mitigation[C]//43rd AIAA Aero-space Sciences Meeting and Exhibit. 2005.
[98] Smolka J, Cowert R, Molzahn L. Flight testing of the Gulfstream Quiet Spike ? on a NASA F-15B[R]. NASA TD2007003280.
[99] Henne P, Howe D, Wolz R, et al. Supersonic aircraft with spike for controlling and reducing sonic boom: US, US6698684 B1[P]. 2014.
[100] Howe D, Simmons III F, Freund D. Development of the Gulfstream Quiet Spike? for sonic boom minimiza-tion[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008.
[101] Howe D. Improved sonic boom minimization with ex-tendable nose spike[C]// 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005.
[102] Cowart R, Grindle T. An overview of the Gulf-stream/NASA Quiet Spike? flight test program[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008.
[103] Smolka J, Cowert R, Molzahn L. Flight testing of the Gulfstream Quiet Spike ? on a NASA F-15B[R]. NASA TD2007003280.
[104] Ozcer I A, Kandil O A, Yagiz B. Parametric study and effect of nose-piece attachment on sonic boom mitiga-tion[C]. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Vol. 1, AIAA 2007-1243, pp 1-11, 2007.
[105] Ozcer I A, Kandil O A, Design optimization of nose geometry of F-5E aircraft for sonic boom mitigation[C]. 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlan-do, Florida, Vol. 1, AIAA 2009-1053, pp 1-14, 2009
[106] Zhang L W, Han Z H, Qiao J L, et. al. A rapid design method for quiet spike of supersonic transport aircraft[C]. ICAS 2021.
[107] Li Z, Chen S, Che S, et al. Investigations on sonic boom mitigation effect for supersonic transport based on quiet spike[C]//Asia-Pacific International Symposium on Aer-ospace Technology. Singapore: Springer Nature Singa-pore, 2023: 457-472.
[108] 张力文,韩忠华,宋文萍,等.一种针对超声速民机的广义静音锥气动布局构型[P]. CN114435580A, 2025-01-26.
Zhang L W, Han Z H, Song W P, et al. A generalized si-lent cone aerodynamic configuration for supersonic civil aircraft[P]. CN114435580A, 2025-01-26(in Chinese).
[109] Ferri A. Airplane configurations for low sonic boom[R]. NASA SP-255, 1970. Washington, DC.
[110] Durston D , Wolter J , Shea P R ,et al.X-59 Sonic Boom Test Results from the NASA Glenn 8- by 6-Foot Super-sonic Wind Tunnel[J].AIAA AVIATION 2023 Forum, 2023.
[111] 范杰,韩忠华,乔建领,等.超声速民机机动飞行的聚焦声爆全场预测方法研究[J].宇航学报, 2024, 45(10):1538-1551.
FAN J, HAN Z H, QIAO J L, et al. Method of full-field focused boom prediction for civiul transport in maneu-vers[J]. Journal of Astronautics, 2024, 45(10): 1538-1551(in Chinese).
[112] MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom: Six decades of research: NASA/SP-2014-622[R]. Washington, D. C.: NASA, 2014.
[113] Perley R, et al. Design and demonstration of a system for routine, boomless supersonic flights[R]. National Tech-nical Information Service, 1977.
[114] SUN Y and SIMITH H. Design and operational assess-ment of a low-boom low-drag supersonic business jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(1): 82-95.
[115] Vermeersch O, Yoshida K, Ueda Y, et al. Natural laminar flow wing for supersonic conditions: Wind tunnel exper-iments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79: 64-91.
[116] Sun Y, Smith H. Review and prospect of supersonic business jet design[J]. Progress in Aerospace Sciences, 2017, 90: 12-38.
[117] Thibert J J, Arnal D. A review of ONERA aerodynamic research in support of a future supersonic transport air-craft[J]. Progress in Aerospace Sciences, 2000, 36(8): 581-627.
[118] Masuda K, Yoshida K. Improving the lift to drag charac-teristics of SST[C]//Aircraft Design and Operations Meeting. 1991: 3105.
[119] Ishikawa H, Ueda Y, Tokugawa N. Natural laminar flow Wing design for a low-boom supersonic aircraft[C]//55th AIAA Aerospace Sciences Meeting. 2017: 1860.
[120] ISHIKAWA H, TOKUGAWA N, UEDA Y, et al. Natu-ral laminar flow wing design of supersonic transport at high Reynolds number condition[C]//29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia. 2014.
[121] Sturdza P. Extensive supersonic natural laminar flow on the Aerion business jet[C]//45th AIAA Aerospace Sci-ences Meeting and Exhibit. 2007: 685.
[122] Garzon A, Matisheck J. Supersonic testing of natural laminar flow on sharp leading edge airfoils. Recent Ex-periments by Aerion Corporation[C]//42nd AIAA Flu-id Dynamics Conference and Exhibit. 2012: 3258.
[123] Lynde M N, Campbell R L. Expanding the natural lami-nar flow boundary for supersonic transports[C]//34th AIAA Applied Aerodynamics Conference. 2016: 4327.
[124] Owens L R, Beeler G, King R, et al. Supersonic Cross-flow Transition Control in Ground and Flight Tests[C]//AIAA Scitech 2019 Forum. 2019: 1651.
[125] Owens L R, Beeler G, King R, et al. Supersonic travel-ing crossflow wave characteristics in ground and flight tests[C]//AIAA Scitech 2020 Forum. 2020: 0777.
[126] Iuliano E, Quagliarella D, Donelli R S, et al. Design of a supersonic natural laminar flow wing-body[J]. Journal of aircraft, 2011, 48(4): 1147-1162.
[127] Iuliano E, Salah El Din I, Donelli R, et al. Natural lami-nar flow design of a supersonic transport jet wing body[C]//47th AIAA Aerospace Sciences Meeting in-cluding The New Horizons Forum and Aerospace Expo-sition. 2009: 1279.
[128] Bushnell D. Supersonic aircraft drag reduction[C]//21st Fluid Dynamics, Plasma Dynamics and Lasers Confer-ence. 1990.
[129] Matsushima K, Maruyama D, Kusunose K, et al. Exten-sion of busemann biplane theory to three dimensional wing fuselage configurations[C]//Proceedings of the 27th ICAS Congress, ICAS Paper. 2010, 2(1).
[130] Kusunose K, Matsushima K, Maruyama D. Supersonic biplane—A review[J]. Progress in Aerospace Sciences, 2011, 47(1): 53-87.
[131] Yamazaki W, Kusunose K. Biplane-wing/twin-body-fuselage configuration for innovative supersonic transport[J]. Journal of Aircraft, 2014, 51(6): 1942-1952.
[132] 李占科,张翔宇,冯晓强,等. 超声速双层翼翼型的阻力特性研究[J]. 应用力学学报, 2014, 31(4): 483-488.
LI Z K, ZHANG X Y, FENG X Q, et al. The study on the drag characteristic of supersonic biplane[J]. CHINESE JOURNAL OF APPLIED MECHANICS, 2014, 51(6): 1942-1952(in Chinese).
[133] 朱宝柱,武洁,李伟杰,等.Busemann 双翼流动壅塞及减阻数值模拟[J].现代应用物理, 2014, 5(4):303-309.
ZHU B Z, WU J, LI W J, et al. Numerical simulation of busemann biplane choked flow and drag reduction[J]. MODERN APPLIED PHYSICS, , 2014, 5(4):303-309(in Chinese).
[134] ZHAI J, ZHANG C A, WANG F M, et al. Design of a new supersonic biplane[J]. Acta Astronautica, 2020, 175: 216-233.
[135] 马博平.超声速低阻低声爆气动布局研究[D]. 西北工业大学, 2020.
MA B P. Research on Supersonic Low-Drag and Low-Boom Aerodynamic Configuration[D]. Northwestern Polytechnical University(in Chinese).
[136] Sklar A, Rusak Z. Busemann-sears-haack hybrid geome-tries applied toward supersonic commercial vehicles for improved wave drag performance[C]//AIAA Scitech 2020 Forum. 2020: 0752.
[137] Rao H, Shi Y, Bai J, et al. Aerodynamic Optimiza-tion Design of Supersonic Wing Based on Discrete Ad-joint[J]. Aerospace, 2023, 10(5): 420.
[138] Guan X. Supersonic wing-body wave drag co-ordinated optimisation based on FCE methodology[J]. The Aero-nautical Journal, 2014, 118(1209): 1359-1372.
[139] Cheung S H, Edwards T A. Supersonic airplane design optimization method for aerodynamic performance and low sonic boom[J]. NASA. Langley Research Center, High-Speed Research: Sonic Boom, Volume 2, 1992.
[140] 李立, 白俊强, 郭同彪, 等. 基于伴随方法的超声速客机机翼气动优化设计[J].西北工业大学学报, 2017, 35(5): 843-849.
LI L, BAI J Q, GUO T B, et al. Aerodynamic optimiza-tion design of the supersonic aircraft based on discrete adjoint method[J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 843-849.
[141] Mangano M, Martins J R R A. Multipoint aerodynamic shape optimization for subsonic and supersonic re-gimes[J]. Journal of Aircraft, 2021, 58(3): 650-662.
[142] Kirz J. Surrogate-Based Low-Boom Low-Drag Nose Design for the JAXA S4 Supersonic Airlin-er[C]//AIAA SCITECH 2022 Forum. 2022: 0706.
[143] Kiyici F, Aradag S. Design and optimization of a super-sonic business jet[C]//22nd AIAA Computational Flu-id Dynamics Conference. 2015: 3064.
[144] Seraj S, Martins J R. Aerodynamic Shape Optimization of a Supersonic Transport Considering Low-Speed Sta-bility[C]//AIAA Scitech 2022 Forum. 2022: 2177.
[145] Bons N, Martins J R R A, Mader C A, et al. High-fidelity aerostructural optimization studies of the aerion AS2 supersonic business jet[C]//AIAA Aviation 2020 Forum. 2020: 3182.
[146] 刘中臣,钱战森,冷岩.声爆近场压力测量风洞试验技术研究进展[J].空气动力学学报,2019,37(04):636-645.
LIU Z C, QIAN Z S, LENG Y. Review of recent pro-gress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. ACTA AERODYNAMICA SINICA, 2019, 37(04): 636-645(in Chinese).
[147] EDGE P M, HUBBARD H H. Review of sonic-boom simulation devices and techniques[J]. Journal of the Acoustical Society of America,1972, 51: 722-7728.
[148] MACK R J, KUHN N S. Determination of an extrapola-tion distance with pressure signatures measured at two to twenty span lengths from two low boom models[R]. NASA TM-2006-214524, 2006.
[149] FERRI A, WANG H. Observations on problems related to experimental determination of sonic boom[R]. NASA SP-255, 1970.
[150] CARLSON H W. An investigation of some aspects of the sonic boom by means of wind-tunnel measurements of pressures about several bodies of revolution at a Mach number of 2.01[R]. NASA TND-161, 1959.
[151] MAKINO Y, NOGUCHI M. Sonic-boom research ac-tivities on unmanned scaled supersonic experimental air-plane[R]. AIAA Paper.
[152] MORGENSTERN J M. How to accurately measure low sonic boom or model surface pressure in supersonic wind tunnels[C]//30th AIAA Applied Aerodynamics Conference. 2012: 3215.
[153] MORGENSTER J M. Distortion correction of low sonic boom measurements in wind tunnels[C]//30th AIAA Ap-plied Aerodynamics Conference. 2012: 3216.
[154] Durston D, Cliff S, Wayman T, et al. Near field sonic boom test on two low-boom configurations using multi-ple measurement techniques at NASA Ames[C]//29th AIAA Applied Aerodynamics Conference. 2011.
[155] CLIFF S, ELMILIGGUI A, AFTOSMIS M, et al.Design and evaluation of a pressure rail for sonic boom measurement in wind tunnels[C]//7th International Conference on Computational Fluid Dynamics(ICCFD7). 2012.
[156] CARLSON H W, MORRIS O A. Wind-tunnel sonic-boom testing techniques[J]. Journal of Aircraft. 1967,4(3):245-249.
[157] Durston D, Elmiligui A, Cliff S, et al. Experimental and computational sonic boom assessment of Boeing N+ 2 low boom models[C]//32nd AIAA Applied Aerodynam-ics Conference. 2014.
[158] 刘中臣,钱战森,冷岩,等. 声爆近场空间压力风洞测量技术[J].航空学报, 2020, 41(4):13.
LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel meas-urement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):13(in Chinese).
[159] Wilcox F J, Elmiligui A, Wayman T R, et al. Experi-mental sonic boom measurements on a Mach 1.6 Cruise Low-Boom Configuration[R]. NASA/TM-2012-217598.
[160] 徐善劼.基于概率模型的声爆试验数据分析[D].南京航空航天大学,2022.
XU S J. Data analysis of sonic boom test bases on prob-ability model[D]. Nanjing University of Aeronautics and Astronautics, 2022(in Chinese).
[161] 杨洋,钱丰学,周波,等.暂冲式超声速风洞声爆试验平台建设进展[C]//第六届中国航空科学技术大会论文集.2023.
YANG Y, QIAN F X, ZHOU B, et al. Construction pro-gress of sonic boom test platform in intermittent super-sonic wind tunnel[C]//Proceedings of the 6th China Avia-tion Science and Technology Conference. 2023(in Chi-nese).
[162] 杨洋,钱丰学,张长丰,等.基于探针的声爆测量风洞试验技术研究[J].实验流体力学, 2023, 37(6):92-100.
YANG Y, QIAN F X, ZHANG C F, et al. Research on wind tunnel test technology of sonic boom mneasure-ment based on probe[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6):92-100(in Chinese).
[163] LIU Z, QIAN F, ZHANG Z, et al. Preliminary Study on Sonic Boom Measurement in Wind Tunnel Based on PIV Technique[C]//Proceedings of the 6th China Aero-nautical Science and Technology Conference. 2023.