激光熔化沉积Ti-3Cu合金变形机制的准原位EBSD拉伸试验研究

  • 姜丽红 ,
  • 朱琳 ,
  • 刘征 ,
  • 赵明杰 ,
  • 魏取龙 ,
  • 范炼海 ,
  • 欧阳祥海 ,
  • 郭正华
展开
  • 南昌航空大学

收稿日期: 2024-12-09

  修回日期: 2025-06-06

  网络出版日期: 2025-06-10

基金资助

国家自然科学基金;国家自然科学基金;江西省自然科学基金;江西省重大科技研发专项

Quasi-In Situ EBSD Tensile Test Study on Deformation Mechanisms of Laser Direct Deposited Ti-3Cu Alloy

  • JIANG Li-Hong ,
  • ZHU Lin ,
  • LIU Zheng ,
  • ZHAO Ming-Jie ,
  • WEI Qu-Long ,
  • FAN Lian-Hai ,
  • FAN Lian-Hai Yang-XiangHai ,
  • GUO Zheng-Hua
Expand

Received date: 2024-12-09

  Revised date: 2025-06-06

  Online published: 2025-06-10

摘要

Ti-Cu合金具有良好的力学性能和耐腐蚀性被用在生物医疗和航天发动机领域,然而其变形机理鲜有研究。本文采用准原位拉伸试验,结合电子背散射衍射(EBSD)技术,研究了通过激光熔化沉积(LMD)原位合金化制备Ti-3Cu合金在室温拉伸过程中的显微组织演变行为。结果发现变形过程中同一晶粒内不同区域呈现不同取向的旋转,位错主要分布在晶界和亚晶界上,小角度晶界(LAGB 2°-15°)的比例随着应变的增加而不断增加。通过对局部晶粒演化过程分析,表明不同的α晶粒(晶体取向和形貌)在拉伸载荷作用下表现出不均匀变形,整体应变由晶粒旋转和亚结构形成来分配。通过Schmid因子的定量统计与滑移迹线的标定分析,证实棱柱滑移系为Ti-3Cu合金的主导滑移系统。通过对激光熔化沉积Ti-3Cu合金变形机理的研究为Ti-Cu合金的制备和应用提供有益的指导。

本文引用格式

姜丽红 , 朱琳 , 刘征 , 赵明杰 , 魏取龙 , 范炼海 , 欧阳祥海 , 郭正华 . 激光熔化沉积Ti-3Cu合金变形机制的准原位EBSD拉伸试验研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31642

Abstract

Ti-Cu alloys exhibit excellent mechanical properties and corrosion resistance, making them promising candidates for biomedical and aerospace engineering applications; however, their deformation mechanisms remain poorly under-stood .In this study, quasi-in situ tensile testing combined with electron backscatter diffraction (EBSD) was employed to investigate the microstructural evolution of a laser melting deposited (LMD) Ti-3Cu alloy fabricated via in situ alloying during room-temperature tensile deformation. The results demonstrated heterogeneous orientation rotations within lo-calized regions of individual grains. Dislocations were primarily concentrated at grain and subgrain boundaries, accom-panied by a progressive increase in the fraction of low-angle grain boundaries (LAGBs, 2°–15°) with increasing strain. Analysis of localized grain evolution revealed that α-grains with distinct crystallographic orientations and morphologies underwent non-uniform deformation, where macroscopic strain was accommodated through grain rotation and sub-structure formation. Quantitative Schmid factor analysis combined with slip trace characterization confirmed the domi-nance of the prismatic slip system in the Ti-3Cu alloy. These findings provide critical insights into the deformation mechanisms of laser-melting-deposited Ti-Cu alloys, offering guidance for their tailored fabrication and performance optimization in advanced applications.

参考文献

[1]Wang H, Yu C, Yu Z, et al.Revealing the evolution of microstructure and mechanical properties with energy density to achieve high-strength Ti-6wt% Cu alloy by laser metal deposition[J]. Materials Science and Engi-neering: A, 2023, 885: 145599.[J].Materials Science and Engineering, 2023, 885:-
[2]何斌斌, 邹海燕, 辛程, 等.含量对生物医用-合金抑菌表现及性能的影响[J].中国有色金属学报, 2023, 33(08):2536-2548
[3]侯冰.Cu元素的存在形式对Ti-Cu合金力学性能和抗菌性能的影响规律[D].东北大学, 2015.
[4]Cardoso F F, Cremasco A, Contieri R J, et al.hexago-nal martensite decomposition and phase precipitation in Ti–Cu alloys[J].Materials & Design, 2011, 32(8-9):4608-4613
[5]Donthula H, Vishwanadh B, Alam T, et al.Morpholog-ical evolution of transformation products and eutectoid transformation (s) in a hyper-eutectoid Ti-12 at% Cu alloy[J]. Acta Materialia, 2019, 168: 63-75.[J].Acta Materialia, 2019, 168:63-75
[6]Wang X, Zhang L J, Ning J, et al.Effect of Cu-induced eutectoid transformation on microstructure and me-chanical properties of Ti–6Al–4V alloy by laser wire deposition[J]. Materials Science and Engineering: A, 2022, 833: 142316.[J].Materials Science and Engineering, 2022, 833:-
[7]Akbarpour M R, Mirabad H M, Hemmati A, et al.Processing and microstructure of Ti-Cu binary alloys: A comprehensive review[J]. Progress in Materials Sci-ence, 2022, 127: 100933.[J].Progress in Materials Science, 2022, 127:-
[8]Zhang D, Qiu D, Gibson M A, et al.Additive manu-facturing of ultrafine-grained high-strength titanium al-loys[J].Nature, 2019, 576(7785):91-95
[9]Alshammari Y, Yang F, Bolzoni L.Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial ma-terial[J]. Journal of the mechanical behavior of biomed-ical materials, 2019, 95: 232-239.[J].Journal of the mechanical behavior of biomed-ical materials, 2019, 95:232-239
[10]Campo K N, Lopes E S N, Parrish C J, et al.Rapid quenching of semisolid Ti-Cu alloys: Insights into globular microstructure formation and coarsening[J]. Acta Materialia, 2017, 139: 86-95.[J].Acta Materialia, 2017, 139:86-95
[11]Hayama A O F, Andrade P N, Cremasco A, et al.Ef-fects of composition and heat treatment on the mechan-ical behavior of Ti–Cu alloys[J]. Materials & Design, 2014, 55: 1006-1013.[J].Materials & Design, 2014, 55:1006-1013
[12]Mosallanejad M H, Niroumand B, Aversa A, et al.In-situ alloying in laser-based additive manufacturing pro-cesses: A critical review[J]. Journal of Alloys and Compounds, 2021, 872: 159567.[J].Journal of Alloys and Compounds, 2021, 872:-
[13]Zhang D, Qiu D, Gibson M A, et al.Additive manu-facturing of ultrafine-grained high-strength titanium al-loys[J].Nature, 2019, 576(7785):91-95
[14]Kim T W, Kim D H, Cho Y T, et al.Manufacturing high strength Ti alloy with in-situ Cu alloying via di-rected energy deposition and evaluation of material properties[J]. Journal of Materials Research and Tech-nology, 2024, 28: 1810-1823.[J].Journal of Materials Research and Technology, 2024, 28:1810-1823
[15]Jin L, Dong J, Sun J, et al.In-situ investigation on the microstructure evolution and plasticity of two magne-sium alloys during three-point bending[J]. International Journal of Plasticity, 2015, 72: 218-232.[J].International Journal of Plasticity,, 2015, 72:218-232
[16]Huang S, Zhao Q, Lin C, et al.In-situ investigation of tensile behaviors of Ti–6Al alloy with extra low inter-stitial[J]. Materials Science and Engineering: A, 2021, 809: 140958.[J].Materials Science and Engineering, 2021, 809:-
[17]Xiaoyu J, Jianwei X, Hui Z, et al.Plastic deformation mechanism of TA1 pure titanium plate using SEM-EBSD in-situ tensile testing[J]. Materials Science and Engineering: A, 2024: 146768.[J].Materials Science and Engineering, 2024, :-
[18]Ullah R, Lu J, Sang L, et al.Investigating the micro-structural evolution during deformation of laser addi-tive manufactured Ti–6Al–4V at 400° C using in-situ EBSD[J]. Materials Science and Engineering: A, 2021, 823: 141761.[J].Materials Science and Engineering, 2021, 823:-
[19]Rizwan M, Lu J, Ullah R, et al.Microstructural and texture evolution investigation of laser melting deposit-ed TA15 alloy at 500° C using in-situ EBSD tensile test[J]. Materials Science and Engineering: A, 2022, 857: 144062.[J].Materials Science and Engineering, 2022, 857:-
[20]Williams J C, Baggerly R G, Paton N E.Deformation behavior of HCP Ti-Al alloy single crystals[J]. Metal-lurgical and Materials Transactions A, 2002, 33: 837-850.[J].Metal-lurgical and Materials Transactions, 2002, 33:837-850
[21]Fitzner A, Prakash D G L, Da Fonseca J Q, et al.The effect of aluminium on twinning in binary alpha-titanium[J]. Acta Materialia, 2016, 103: 341-351.[J].Acta Materialia, 2016, 103:341-351
[22]Zaefferer S.A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture[J].Materials Sci-ence and Engineering: A, 2003, 344(1-2):20-30
[23]Wang H, Ran X, Wang H, et al.Microstructure for-mation mechanism and mechanical properties of super-thickness TC11 titanium alloy joint by electron beam welding and laser additive manufacturing hybrid con-nection technology[J]. Journal of Materials Processing Technology, 2024, 331: 118502.[J].Journal of Materials Processing Technology, 2024, 331:-
[24]Yan W, Wang H, Tang H, et al.Effect of Nd addition on microstructure and tensile properties of laser addi-tive manufactured TC11 titanium alloy[J].Transactions of Nonferrous Metals Society of China, 2022, 32(5):1501-1512
[25]Bhardwaj T, Shukla M, Paul C P, et al.Direct energy deposition-laser additive manufacturing of titanium-molybdenum alloy: Parametric studies, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 787: 1238-1248.[J].Journal of Alloys and Compounds, 2019, 787:1238-1248
[26]Chen Y, Yang C, Fan C, et al.Microstructure evolution mechanism and mechanical properties of TC11-TC17 dual alloy after annealing treatment[J]. Journal of Al-loys and Compounds, 2020, 842: 155874.[J].Journal of Al-loys and Compounds, 2020, 842:-
[27]王哲.铸造钛铜合金组织演变规律及力学和腐蚀性能研究[D].河北工业大学, 2022.
[28]Zhang S, Zhou J, Wang L, et al.Crack nucleation due to dislocation pile-ups at twin boundary–grain bounda-ry intersections[J]. Materials Science and Engineering: A, 2015, 632: 78-81.[J].Materials Science and Engineering, 2015, 632:78-81
[29]王艳丽, 卢刚.不同拉伸率对5052铝合金O态板带材力学性能的影响[J].热处理技术与装备2017, 38(04):39-41.[J].热处理技术与装备, 2017, 38(04):39-41
[30]Zhao G, Sun M, Li J, et al.Study on quasi-in-situ tensile microstructure evolution law of 5052-O alumi-num alloy based on EBSD[J]. Materials Today Com-munications, 2022, 33: 104572.[J].Materials Today Com-munications, 2022, 33:-
[31]Calcagnotto M, Ponge D, Demir E, et al.Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J].Materials Science and Engineering, 2010, 527(10-11):2738-2746
[32]Kundu A, Field D P.Influence of plastic deformation heterogeneity on development of geometrically neces-sary dislocation density in dual phase steel[J]. Materi-als Science and Engineering: A, 2016, 667: 435-443.[J].Materi-als Science and Engineering, 2016, 667:435-443
[33]Jiang J, Britton T B, Wilkinson A J.Evolution of dis-location density distributions in copper during tensile deformation[J].Acta Materialia, 2013, 61(19):7227-7239
[34]Lu J, Chang L, Wang J, et al.In-situ investigation of the anisotropic mechanical properties of laser direct metal deposition Ti6Al4V alloy[J]. Materials Science and Engineering: A, 2018, 712: 199-205.[J].Materials Science and Engineering, 2018, 712:199-205
[35]Li W, Yamasaki S, Mitsuhara M, et al.In situ EBSD study of deformation behavior of primary α phase in a bimodal Ti-6Al-4V alloy during uniaxial tensile tests[J]. Materials Characterization, 2020, 163: 110282.[J].Materials Characterization, 2020, 163:-
文章导航

/