[1]Wang H, Yu C, Yu Z, et al.Revealing the evolution of microstructure and mechanical properties with energy density to achieve high-strength Ti-6wt% Cu alloy by laser metal deposition[J]. Materials Science and Engi-neering: A, 2023, 885: 145599.[J].Materials Science and Engineering, 2023, 885:-
[2]何斌斌, 邹海燕, 辛程, 等.含量对生物医用-合金抑菌表现及性能的影响[J].中国有色金属学报, 2023, 33(08):2536-2548
[3]侯冰.Cu元素的存在形式对Ti-Cu合金力学性能和抗菌性能的影响规律[D].东北大学, 2015.
[4]Cardoso F F, Cremasco A, Contieri R J, et al.hexago-nal martensite decomposition and phase precipitation in Ti–Cu alloys[J].Materials & Design, 2011, 32(8-9):4608-4613
[5]Donthula H, Vishwanadh B, Alam T, et al.Morpholog-ical evolution of transformation products and eutectoid transformation (s) in a hyper-eutectoid Ti-12 at% Cu alloy[J]. Acta Materialia, 2019, 168: 63-75.[J].Acta Materialia, 2019, 168:63-75
[6]Wang X, Zhang L J, Ning J, et al.Effect of Cu-induced eutectoid transformation on microstructure and me-chanical properties of Ti–6Al–4V alloy by laser wire deposition[J]. Materials Science and Engineering: A, 2022, 833: 142316.[J].Materials Science and Engineering, 2022, 833:-
[7]Akbarpour M R, Mirabad H M, Hemmati A, et al.Processing and microstructure of Ti-Cu binary alloys: A comprehensive review[J]. Progress in Materials Sci-ence, 2022, 127: 100933.[J].Progress in Materials Science, 2022, 127:-
[8]Zhang D, Qiu D, Gibson M A, et al.Additive manu-facturing of ultrafine-grained high-strength titanium al-loys[J].Nature, 2019, 576(7785):91-95
[9]Alshammari Y, Yang F, Bolzoni L.Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial ma-terial[J]. Journal of the mechanical behavior of biomed-ical materials, 2019, 95: 232-239.[J].Journal of the mechanical behavior of biomed-ical materials, 2019, 95:232-239
[10]Campo K N, Lopes E S N, Parrish C J, et al.Rapid quenching of semisolid Ti-Cu alloys: Insights into globular microstructure formation and coarsening[J]. Acta Materialia, 2017, 139: 86-95.[J].Acta Materialia, 2017, 139:86-95
[11]Hayama A O F, Andrade P N, Cremasco A, et al.Ef-fects of composition and heat treatment on the mechan-ical behavior of Ti–Cu alloys[J]. Materials & Design, 2014, 55: 1006-1013.[J].Materials & Design, 2014, 55:1006-1013
[12]Mosallanejad M H, Niroumand B, Aversa A, et al.In-situ alloying in laser-based additive manufacturing pro-cesses: A critical review[J]. Journal of Alloys and Compounds, 2021, 872: 159567.[J].Journal of Alloys and Compounds, 2021, 872:-
[13]Zhang D, Qiu D, Gibson M A, et al.Additive manu-facturing of ultrafine-grained high-strength titanium al-loys[J].Nature, 2019, 576(7785):91-95
[14]Kim T W, Kim D H, Cho Y T, et al.Manufacturing high strength Ti alloy with in-situ Cu alloying via di-rected energy deposition and evaluation of material properties[J]. Journal of Materials Research and Tech-nology, 2024, 28: 1810-1823.[J].Journal of Materials Research and Technology, 2024, 28:1810-1823
[15]Jin L, Dong J, Sun J, et al.In-situ investigation on the microstructure evolution and plasticity of two magne-sium alloys during three-point bending[J]. International Journal of Plasticity, 2015, 72: 218-232.[J].International Journal of Plasticity,, 2015, 72:218-232
[16]Huang S, Zhao Q, Lin C, et al.In-situ investigation of tensile behaviors of Ti–6Al alloy with extra low inter-stitial[J]. Materials Science and Engineering: A, 2021, 809: 140958.[J].Materials Science and Engineering, 2021, 809:-
[17]Xiaoyu J, Jianwei X, Hui Z, et al.Plastic deformation mechanism of TA1 pure titanium plate using SEM-EBSD in-situ tensile testing[J]. Materials Science and Engineering: A, 2024: 146768.[J].Materials Science and Engineering, 2024, :-
[18]Ullah R, Lu J, Sang L, et al.Investigating the micro-structural evolution during deformation of laser addi-tive manufactured Ti–6Al–4V at 400° C using in-situ EBSD[J]. Materials Science and Engineering: A, 2021, 823: 141761.[J].Materials Science and Engineering, 2021, 823:-
[19]Rizwan M, Lu J, Ullah R, et al.Microstructural and texture evolution investigation of laser melting deposit-ed TA15 alloy at 500° C using in-situ EBSD tensile test[J]. Materials Science and Engineering: A, 2022, 857: 144062.[J].Materials Science and Engineering, 2022, 857:-
[20]Williams J C, Baggerly R G, Paton N E.Deformation behavior of HCP Ti-Al alloy single crystals[J]. Metal-lurgical and Materials Transactions A, 2002, 33: 837-850.[J].Metal-lurgical and Materials Transactions, 2002, 33:837-850
[21]Fitzner A, Prakash D G L, Da Fonseca J Q, et al.The effect of aluminium on twinning in binary alpha-titanium[J]. Acta Materialia, 2016, 103: 341-351.[J].Acta Materialia, 2016, 103:341-351
[22]Zaefferer S.A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture[J].Materials Sci-ence and Engineering: A, 2003, 344(1-2):20-30
[23]Wang H, Ran X, Wang H, et al.Microstructure for-mation mechanism and mechanical properties of super-thickness TC11 titanium alloy joint by electron beam welding and laser additive manufacturing hybrid con-nection technology[J]. Journal of Materials Processing Technology, 2024, 331: 118502.[J].Journal of Materials Processing Technology, 2024, 331:-
[24]Yan W, Wang H, Tang H, et al.Effect of Nd addition on microstructure and tensile properties of laser addi-tive manufactured TC11 titanium alloy[J].Transactions of Nonferrous Metals Society of China, 2022, 32(5):1501-1512
[25]Bhardwaj T, Shukla M, Paul C P, et al.Direct energy deposition-laser additive manufacturing of titanium-molybdenum alloy: Parametric studies, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 787: 1238-1248.[J].Journal of Alloys and Compounds, 2019, 787:1238-1248
[26]Chen Y, Yang C, Fan C, et al.Microstructure evolution mechanism and mechanical properties of TC11-TC17 dual alloy after annealing treatment[J]. Journal of Al-loys and Compounds, 2020, 842: 155874.[J].Journal of Al-loys and Compounds, 2020, 842:-
[27]王哲.铸造钛铜合金组织演变规律及力学和腐蚀性能研究[D].河北工业大学, 2022.
[28]Zhang S, Zhou J, Wang L, et al.Crack nucleation due to dislocation pile-ups at twin boundary–grain bounda-ry intersections[J]. Materials Science and Engineering: A, 2015, 632: 78-81.[J].Materials Science and Engineering, 2015, 632:78-81
[29]王艳丽, 卢刚.不同拉伸率对5052铝合金O态板带材力学性能的影响[J].热处理技术与装备2017, 38(04):39-41.[J].热处理技术与装备, 2017, 38(04):39-41
[30]Zhao G, Sun M, Li J, et al.Study on quasi-in-situ tensile microstructure evolution law of 5052-O alumi-num alloy based on EBSD[J]. Materials Today Com-munications, 2022, 33: 104572.[J].Materials Today Com-munications, 2022, 33:-
[31]Calcagnotto M, Ponge D, Demir E, et al.Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J].Materials Science and Engineering, 2010, 527(10-11):2738-2746
[32]Kundu A, Field D P.Influence of plastic deformation heterogeneity on development of geometrically neces-sary dislocation density in dual phase steel[J]. Materi-als Science and Engineering: A, 2016, 667: 435-443.[J].Materi-als Science and Engineering, 2016, 667:435-443
[33]Jiang J, Britton T B, Wilkinson A J.Evolution of dis-location density distributions in copper during tensile deformation[J].Acta Materialia, 2013, 61(19):7227-7239
[34]Lu J, Chang L, Wang J, et al.In-situ investigation of the anisotropic mechanical properties of laser direct metal deposition Ti6Al4V alloy[J]. Materials Science and Engineering: A, 2018, 712: 199-205.[J].Materials Science and Engineering, 2018, 712:199-205
[35]Li W, Yamasaki S, Mitsuhara M, et al.In situ EBSD study of deformation behavior of primary α phase in a bimodal Ti-6Al-4V alloy during uniaxial tensile tests[J]. Materials Characterization, 2020, 163: 110282.[J].Materials Characterization, 2020, 163:-