The grasping manipulator is a novel aerospace equipment developed for space debris capture, which is of significant importance in mitigating the growth of debris and effectively maintaining the space nvironment. In response to increasingly complex space mission requirements, a pressing demand has been identified in the aerospace field for new configurations of grasping manipulators with large operational ranges, multi-working-condition adaptability, and high flexibility. To address this, a modular octopus-inspired grasping manipulator with deployable and flexible characteristics is proposed, and its kinematic erformance is investigated. First, by analyzing the muscular structure of an octopus tentacle, the mechanism underlying its flexible bending motion is elucidated, and a bio-inspired mapping relationship between the octopus tentacle and the manipulator is established, focusing on the kinematic functional dimension. Second, a Muscular-Hydrostats (M-H) unit with local motion characteristics similar to those of octopus arms is designed, and an n-PRP interconnected hyper-redundant mechanism with both deployable and bending functions is synthesized
and optimized based on screw theory and graph theory. Third, under the constant curvature assumption, a multi-segment
bending kinematic model for cable-driven systems is established using homogeneous coordinate transformation, accounting for complex coupling effects, and its workspace is analyzed. Finally, a prototype of the bio-inspired grasping manipulator is developed, and functional grasping experiments are conducted on target objects of various sizes and shapes. The results demonstrate that the proposed modular octopus-inspired manipulator exhibits variable-scale and multi-segment underactuated bending characteristics, along with variable backbone and self-adaptive capabilities. While meeting the fundamental requirements for satellite-borne launch, it enables large-scale and diversified grasping of various non-cooperative targets.
[1]王国庆, 熊焕, 侯俊杰. 数字时代的航天系统工程[J]. 机械工程学报, 2024, 60(14): 206-214.
[2]LONG J, HUANG C. Obligations and liabilities con-cerning the active removal of foreign space debris: a global governance perspective[J]. Acta Astronautica, 2024.
[3]PANG B J, WANG D F, XIAO W K, et al. Space debris cumulative flux considering the interval distance-based method[J]. Advances in Space Research, 2021: 2274-2281.
[4]许英杰, 刘晓路, 贺仁杰, 等. 空间碎片主动移除任务规划研究综述[J]. 控制与决策, 2024, 39(2): 371-380.
[5]VIMALESH M, PHILIPPE W, CHRISTINE C. Design considerations and workspace com-putation of 2-X and 2-R planar cable-driven tensegrity-inspired manipula-tors. Mechanism and Machine Theory[J]. 2024, 195: 105610.
[6]XU K, ZHUANG X H, QIAO A W, et al. Design and analysis of a novel deployable grasping manipulator for space object capture[J]. Acta Astronautica, 2024, 224: 266-280.
[7]ZHANG Y, KANG X, LI B. A family of folding single-loop metamorphic mechanisms for aerospace manipula-tors: Synthesis, network, and analysis[J]. Mechanism and Machine Theory, 2024, 201: 105728.
[8]ZHAO C, GUO H W, LIU R Q, et al. Actuation distri-bution and workspace analysis of a novel 3(3RRlS) met-amorphic serial-parallel manipulator for grasping space non-cooperative targets[J]. Mechanism and Machine Theory, 2019, 139: 424-442.
[9]LI G T, XU P, QIAO S L, et al. Stability analysis and optimal enveloping grasp planning of a deployable ro-botic hand[J]. Mechanism and Machine Theory, 2021,
[10]韩博, 杨名, 骆明炎, 等. 单驱动空间可展开变胞捕获机械手设计与分析[J/OL]. 机械工程学报, 2024, 1-14.
[11]QIAO S L, GUO H W, LIU R Q, et al. Self-adaptive grasp process and equilibrium configuration analysis of a 3-DOF UACT robotic finger[J]. Mechanism and Ma-chine Theory, 2019, 133: 250-266.
[12]ZHANG B T, SUN J L, HU H Y. Deployment dynamics and experiments of a tendon-actuated flexible manipula-tor[J]. Chinese Journal of Aeronautics, 2024.
[13]戴建生, 安伟, 王瑞钦, 等. 基于可重构虎克铰链副的仿人变胞手设计与分析[J]. 天津大学学报, 2022, 55(3): 221-229.
[14]龙奕琳, 王彬峦, 金弘哲, 等. 基于差动轮系的变刚度执行器及变刚度柔性手爪[J]. 机械工程学报, 2023, 59(1): 91-102.
[15]WANG G, ZHANG Q H, HU X. et al. Capture dynamics and driving method of origami capture mechanism in or-bit[J]. Thin-Walled Structures, 2024, 201: 112019.
[16]WANG S, YAN P, HUANG H L, et al. Inflatable meta-morphic origami[J]. Research, 2023, 6: 0133.
[17]杨慧, 汪祥, 乔尚岭, 等. Kresling和Miura折痕混合型三指机械手的运动学分析及其设计[J]. 机器人, 2022, 44(1): 35-44.
[18]MARGHERI L, LASCHI C, MAZZOLAI B. Soft ro-botic arm inspired by the octopus: I. From biological functions to artificial requirements[J]. Bioinspiration & Biomimetics, 2012, 7(2): 1-12.
[19]MATSUDA R, MAVINKURVE U, KANADA A, et al. A Woodpecker’s Tongue-Inspired, Bendable and Ex-tendable Robot Manipulator With Structural Stiffness[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3334-3341.
[20]ZHEXIN XIE, AUGUST G. DOMEL, NING AN. et al. Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping[J]. Soft Robotics, 2020, 7(5): 639-648.
[21]曹晟阁, 于靖军, 潘杰, 等. 滚动接触柔性连续体机器人的设计与运动能力分析[J]. 机械工程学报, 2021, 57(19): 21-29.
[22]梁斌, 徐文福, 王学谦, 等. 自由漂浮空间机器人捕获翻滚目标的力-位-型融合控制方法[J]. 宇航学报, 2024, 45(6): 958-969.
[23]SHEN W, YANG G, ZHENG T, et al. An Accuracy En-hancement Method for a Cable-Driven Continuum Ro-bot With a Flexible Backbone[J]. IEEE Access, 2020, 8: 37474-37481.
[24]冯笑笑, 胡海燕, 李龙委, 等. 基于力感知的结肠镜机器人柔顺控制[J]. 机器人, 2016, 38(2): 217-224.
[25]孟光, 韩亮亮, 张崇峰. 空间机器人研究进展及技术挑战[J]. 航空学报, 2021, 42(1): 8-32.
[26]潘杰, 于靖军, 裴旭. 柔性手爪机构设计与变刚度技术研究发展综述[J]. 机械工程学报, 2024, 60(13): 281-296.
[27]陶永, 刘海涛, 王田苗, 等. 我国服务机器人技术研究进展与产业化发展趋势[J]. 机械工程学报, 2022, 58(18): 56-74.
[28]GAOZHANG W, LI Y, SHI J, et al. A novel stiffness-controllable joint using antagonistic actuation princi-ples[J]. Mechanism and Machine Theory, 2024, 196: 105614.
[29]KIER W M, STELLA M P. The arrangement and func-tion of octopus arm musculature and connective tissue[J]. Journal of morphology, 2007, 268(10): 831-843.
[30]邓宗全. 空间折展机构设计[M]. 哈尔滨工业大学出版社, 2013: 93-98.
[31]黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京: 高等教育出版社, 2006: 121-137.
[32]GARRIGA-CASANOVAS A, RODRIGUEZ Y BAENA F. Kinematics of continuum robots with constant curva-ture bending and extension capabilities[J]. Journal of Mechanisms and Robotics, 2019, 11(1): 011010.
[33]王巍, 綦磊, 闫军, 等. 微小空间碎片多参数在轨探测技术[J]. 空间科学与试验学报, 2024, 1(2): 100-105.