[1] 唐志共, 袁先旭, 钱炜祺, 等. 高速空气动力学三大手段数据融合研究进展[J]. 空气动力学学报, 2023, 41(8): 44?58. DOI: 10.7638/kqdlxxb-2023.0096.
TANG Z G, YUAN X X, QIAN W Q, et al. Research progress on the fusion of data obtained by high-speed wind tunnels, CFD and model flight[J]. Acta Aerodynamica Sinica, 2023, 41(8): 44?58. DOI: 10.7638/kqdlxxb-2023.0096
[2] POLOCZEK M , WANG J , FRAZIER P I .Multi-information source optimization[C]//Neural Information Processing Systems.2017.
[3] 邓晨, 陈功, 王文正, 等. 基于不确定度和气动模型的气动数据融合算法[J]. 空气动力学学报, 2022, 40(4): 117?123. DOI: 10.7638/kqdlxxb-2020.0151.
DENG C, CHEN G, WANG W Z, et al. Aerodynamic data fusion algorithms based on aerodynamic model and uncertainly[J]. Acta Aerodynamica Sinica, 2022, 40(4): 117?123. DOI: 10.7638/kqdlxxb-2020.0151
[4] 唐志共, 朱林阳, 向星皓, 等. 智能空气动力学若干研究进展及展望[J]. 空气动力学学报, 2023, 41(7): 1?35. DOI: 10.7638/kqdlxxb-2023.0128.
TANG Z G, ZHU L Y, XIANG X H, et al. Some research progress and prospect of Intelligent Aerodynamics[J]. Acta Aerodynamica Sinica, 2023, 41(7): 1?35. DOI: 10.7638/kqdlxxb-2023.0128
[5] X. LIANG, Y. QIAN, Q. GUO, H. CHENG and J. LIANG, "AF: An Association-Based Fusion Method for Multi-Modal Classification," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 9236-9254, 1 Dec. 2022, doi: 10.1109/TPAMI.2021.3125995.
[6] ZHANG Z J, DURAISAMY K. Machine learning methods for data-driven turbulence modeling[C]//22nd AIAA computational fluid dynamics conference. 2015: 2460, doi: 10.2514/6.2015-2460.
[7] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. nature, 2015, 521(7553): 436-444, doi: 10.1038/nature14539
[8] L. HU, J. ZHANG, Y. XIANG and W. WANG, "Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review," in IEEE Access, vol. 8, pp. 90805-90823, 2020, doi: 10.1109/ACCESS.2020.2993562.
[9] MARCATO A, BOCCARDO G, MARCHISIO D L. A computational workflow to study particle transport in porous media: coupling CFD and deep learn-ing[M]//Computer Aided Chemical Engineering. Else-vier, 2020, 48: 1759-1764. doi: 10.1016/b978-0-12-823377-1.50294-9
[10] PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of computational physics, 2016, 305: 758-774. doi: 10.1016/j.jcp.2015.11.012
[11] J. LI, B. LI, J. XU, R. XIONG and W. GAO, "Fully Connected Network-Based Intra Prediction for Image Coding," in IEEE Transactions on Image Processing, vol. 27, no. 7, pp. 3236-3247, July 2018, doi: 10.1109/TIP.2018.2817044.
[12] BELYAEV, M., BURNAEV, E., KAPUSHEV, E., ALESTRA, S., DORMIEUX, M., CAVAILLES, A., … FERREIRA, E. (2014). Building Data Fusion Surrogate Models for Spacecraft Aerodynamic Problems with Incomplete Factorial Design of Experiments. Advanced Materials Research, 1016, 405–412. doi:10.4028/www.scientific.net/amr.1016.405
[13] 王文正, 桂业伟, 何开锋, 袁先旭, 陈焰青. 基于数学模型的气动力数据融合研究[J]. 空气动力学学报, 2009, 27(5): 524-528.
WANG Wen-zheng, GUI Ye-wei, HE Kai-feng, YUAN Xian-xu, CHEN Yan-qin. Aerodynamic data fusion technique exploration[J]. ACTA AERODYNAMICA SINICA, 2009, 27(5): 524-528.
[14] 张骏, 张广博, 程艳青, 等. 一种气动大差异性数据多任务学习方法[J]. 空气动力学学报, 2022, 40(6): 64?72. DOI: 10.7638/kqdlxxb-2021.0222.
ZHANG J, ZHANG G B, CHENG Y Q, et al. A multi-task learning method for large discrepant aerodynamic data[J]. Acta Aerodynamica Sinica, 2022, 40(6): 64?72. DOI: 10.7638/kqdlxxb-2021.0222
[15] 赵旋,彭绪浩,邓子辰,等. 基于多源数据融合的翼型表面压强精细化重构方法[J]. 实验流体力学,2022,36(3):93-101. DOI: 10.11729/syltlx20210166.
ZHAO X,PENG X H,DENG Z C,et al. Fine reconstruction method of airfoil surface pressure based on multi-source data fusion[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):93-101. . doi: 10.11729/syltlx20210166
[16] 王旭, 宁晨伽, 王文正, 等. 面向飞行试验的多源气动数据智能融合方法[J]. 空气动力学学报, 2023, 41(2): 12?20. DOI: 10.7638/kqdlxxb-2021.0428.
WANG X, NING C J, WANG W Z, et al. Intelligent fusion method of multi-source aerodynamic data for flight tests[J]. Acta Aerodynamica Sinica, 2023, 41(2): 12?20. DOI: 10.7638/kqdlxxb-2021.0428
[17] LI K., KOU J. and ZHANG W., “Deep Learning for Multifidelity Aerodynamic Distribution Modeling from Experimental and Simulation Data,” AIAA Journal, Vol. 60, No. 7, 2022, pp. 4413–4427. doi:10.2514/1.j061330
[18] HU L, XIANG Y, ZHANG J, et al. Aerodynamic data predictions based on multi-task learning[J]. Applied Soft Computing, 2022, 116: 108369. doi:10.1016/j.asoc.2021.108369
[19] GIROSI F , POGGIO T .Networks and the Best Approximation Property[J].Biological Cybernetics, 1990, 63(3):169-176.DOI:10.1007/BF00195855.
[20] POGGIO T , GIROSI F .Networks for approximation and learning[J].Proc IEEE, 1990, 78(9):1481-1497.DOI:10.1109/5.58326.
[21] L. HU, W. WANG, Y. XIANG and J. ZHANG, "Flow Field Reconstructions With GANs Based on Radial Basis Functions," in IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 4, pp. 3460-3476, Aug. 2022, doi: 10.1109/TAES.2022.3152706
[22] 邓晨, 陈功, 王文正, 等. 基于不确定度和气动模型的气动数据融合算法[J]. 空气动力学学报, 2022, 40(4): 117?123. doi: 10.7638/kqdlxxb-2020.0151
DENG C, CHEN G, WANG W Z, et al. Aerodynamic data fusion algorithms based on aerodynamic model and uncertainly[J]. Acta Aerodynamica Sinica, 2022, 40(4): 117?123. doi: 10.7638/kqdlxxb-2020.0151