复合材料海水湿热老化机理与拉伸损伤特征

  • 李天震 ,
  • 魏景超 ,
  • 曹勇 ,
  • 刘靖宇 ,
  • 李永存 ,
  • 王文智
展开
  • 1. 太原理工大学
    2. 中国飞机强度研究所
    3. 太原理工大学机械与运载工程学院
    4. 西北工业大学

收稿日期: 2024-12-30

  修回日期: 2025-03-30

  网络出版日期: 2025-04-10

基金资助

国家自然科学基金;国家自然科学基金;山西省研究生科研创新项目;山西省科技创新人才团队(领军)专项

Mechanism of seawater hydrothermal aging and tensile damage characteristics of composite materials

  • LI Tian-Zhen ,
  • WEI Jing-Chao ,
  • CAO Yong ,
  • LIU Jing-Yu ,
  • LI Yong-Cun ,
  • WANG Wen-Zhi
Expand

Received date: 2024-12-30

  Revised date: 2025-03-30

  Online published: 2025-04-10

摘要

海水中的湿热和盐雾环境会影响复合材料的性能和服役年限。在空气、纯水、海水和十倍浓度海水环境中对CFRP开展了湿热老化试验,基于Fick定律修正了循环变温下海水老化的吸湿模型,饱和吸湿后开展了准静态拉伸试验测试力学性能。提出了保留湿热应力状态的分步耦合仿真计算策略,用于预测吸湿后的复合材料拉伸损伤特征。该策略分步耦合获得湿热应力场,并将湿热应力导入到拉伸仿真分析模型之中,实现了在力学计算模型之中考虑湿热膨胀对材料性能劣化的影响。基于试验和仿真,研究了复合材料在多类环境因素下的吸湿特征和吸湿后的拉伸损伤特征。结果表明:修正吸湿模型和分步耦合仿真策略可有效表征循环温度下多浓度环境下的吸湿过程以及湿热膨胀对材料力学性能的影响;饱和吸湿率随浓度增加而降低,吸湿速率与温度呈明显的正比关系,吸湿速率与浓度呈反比;老化后CFRP的弹性模量随浓度增加而微弱降低,强度极限略微降低,树脂基体性能退化为主要老化影响因素;试件失效模式受老化影响可分为片状断裂、爆炸性纤维条状碎裂和纤维-树脂抽离破坏,原因是海水浓度越高对树脂基体的老化作用越明显,导致纤维-树脂结合力降低。

本文引用格式

李天震 , 魏景超 , 曹勇 , 刘靖宇 , 李永存 , 王文智 . 复合材料海水湿热老化机理与拉伸损伤特征[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31729

Abstract

The exposure to moisture, thermal conditions, and salt spray in seawater can impact the properties and service life of composites. Hygrothermal aging tests were conducted on CFRP in air, pure water, seawater, and seawater with a tenfold concentration. The moisture absorption model for seawater aging under cyclic temperature variation was modified based on Fick’s law. Additionally, quasistatic tensile tests were performed to assess the mechanical properties after the composites absorbed moisture to saturation. A stepwise coupled simulation strategy that accounts for hygrothermal stress is proposed to predict the tensile damage behavior of composites after moisture absorption. In this strategy, the hygrothermal stress field is obtained incrementally, and the resulting stress is incorporated into the tensile simulation model. This approach allows the effects of hygrothermal expansion on material cracking to be included in the mechanical calculations. Based on experimental results and simulations, the moisture absorption characteristics and tensile damage behavior of composites under various environmental conditions after moisture absorption were investigated. The main findings are as follows: The modified moisture absorption model and the stepwise coupled simulation strategy effectively char-acterize the hygroscopic process in multi-concentration environments at cyclic temperatures and the effects of hygrothermal expan-sion on material mechanical properties. Saturated moisture absorption decreases with increasing concentration, and the rate of mois-ture absorption is directly proportional to temperature but inversely proportional to concentration. The modulus of elasticity of aged CFRP decreases weakly with increasing concentration, and the strength limit decreases slightly. The degradation of the resin matrix properties is the primary aging influence. The failure modes of specimens affected by aging can be categorized as sheet fracture, explosive fiber-strip fragmentation, and fiber-resin pullout damage. These modes are due to the more pronounced aging effects of higher seawater concentration on the resin matrix, resulting in weakened fiber-resin bonding.

参考文献

[1] ALAM P, MAMALIS D, ROBERT C, et al. The fatigue of carbon fibre reinforced plastics - A review [J]. Composites Part B: Engineering, 2019. [2] ACETI P, CARMINATI L, BETTINI P, et al. Hygrothermal ageing of composite structures. Part 1: technical review [J]. Composite Structures, 2023. [3] ZHOU Y, CAO Y, CAO J, et al. Fracture toughness and fiber bridging mechanism for mode-I interlaminar failure of spread-tow woven composites [J]. Engineering Fracture Mechanics, 2024. [4] 张超, 曹勇, 赵振强, 等. 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展 [J]. 航空学报, 2024, 45(02) : 6-23. ZHANG C,CAO Y,ZHAO Z Q,et al. Applications and key challenges of polymer composites in civilaero-engines:State-of-art review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(02) : 6-23 (in Chinese). [5] GENG D, LIU Y, SHAO Z, et al. Delamination formation, evaluation and suppression during drilling of composite laminates: A review [J]. Composite Structures, 2019. [6] MAYANDI K, RAJINI N, AYRILMIS N, et al. An overview of endurance and ageing performance under various environmental conditions of Hybrid Polymer Composites [J]. Journal of Materials Research and Technology, 2020. [7] 徐晋伟, 邓宗义, 肖文刚, 等. 纤维缠绕成型碳纤维/环氧复合材料人工海水老化行为研究 [J]. 纤维复合材料, 2022, 39(03) : 42-7. XU J W, DANG Z Y, XIAO W G, et al. Study on the artificial seawater aging behavior of fiber-winding molded carbon fiber/epoxy composites [J]. Fiber Composites, 2022, 39(03) : 42-7 (in Chinese). [8] 曹勇, 张超. 薄层复合材料冲击损伤行为研究进展 [J]. 航空学报, 2022, 43(06) : 154-70. CAO Y, ZHANG C. Impact damage behavior of thin-layer composites [J]. Journal of Aeronautics, 2022, 43(06) : 154-70(in Chinese). [9] 丁康康, 陈志强, 姜浩, 等. 典型海洋环境碳纤维增强树脂基复合材料老化规律研究 [J]. 装备环境工程, 2024, 21(07) : 45-52. DING K K, CHEN Z Q, JIANG H, et al. Study on the aging law of carbon fiber reinforced resin matrix composites in typical marine environment [J]. Equipment Environmental Engineering, 2024, 21(07) : 45-52 (in Chinese). [10] BAO L-R, YEE A F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites—part I: uni-weave composites [J]. Composites Science and Technology, 2002. [11] LI H, ZHANG K, FAN X, et al. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites [J]. Composites Part B: Engineering, 2019. [12] DU Y, MA Y E, SUN W, et al. Effect of hygrothermal aging on moisture diffusion and tensile behavior of CFRP composite laminates [J]. Chinese Journal of Aeronautics, 2022. [13] LIU Y, WANG H, DU J, et al. Comparative experimental study on mechanical properties of CFRP subjected to seawater and hydrostatic pressure [J]. Composites Science and Technology, 2023. [14] HUO H, WEI J, CAO Y, et al. Retained Hygrothermal State Compression Damage Behavior Investigation of Carbon Fiber Reinforced Composites [J]. Applied Composite Materials, 2024. [15] 魏程, 王威力, 李刚, 等. 环氧树脂/玻璃纤维复合材料加速湿热老化机理研究 [J]. 纤维复合材料, 2023, 40(02) : 58-62. WEI C, WANG W L, LI G, et al. Study on the mechanism of accelerated moisture-heat aging of epoxy resin/glass fiber composites [J]. Fiber Composites, 2023, 40(02) : 58-62 (in Chinese). [16] 王威力, 魏程, 田晶. 碳纤维复合材料的湿热老化模型研究 [J]. 复合材料科学与工程, 2023, (11) : 44-8. WANG W L, WEI C, TIAN J. Modeling of wet-heat aging of carbon fiber composites [J]. Composites Science and Engineering, 2023, (11) : 44-8 (in Chinese). [17] DEVINE M, BAJPAI A, OBANDE W, et al. Seawater ageing of thermoplastic acrylic hybrid matrix composites for marine applications [J]. Composites Part B: Engineering, 2023. [18] WANG Y, ZHU W, WAN B, et al. Hygrothermal ageing behavior and mechanism of carbon nanofibers modified flax fiber-reinforced epoxy laminates [J]. Composites Part A: Applied Science and Manufacturing, 2020. [19] LIU L, ZHAO Z, CHEN W, et al. An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites [J]. Composite Structures, 2018. [20] OLESJA S, SERGEJS G, OSKARS P, et al. Water absorption and hydrothermal ageing of epoxy adhesives reinforced with amino-functionalized graphene oxide nanoparticles [J]. Polymer Degradation and Stability, 2021. [21] CAO Y, CAI Y, ZHAO Z, et al. Predicting the tensile and compressive failure behavior of angle-ply spread tow woven composites [J]. Composite Structures, 2020. [22] HOU Y, PANESAR A. The moisture absorption of additively manufactured short carbon fibre reinforced polyamide [J]. Composites Part A: Applied Science and Manufacturing, 2025, 188: 108528. [23] HASHIN. Failure Criteria for Unidirectional Fiber Composites [J]. Journal of Applied Mechanics, 1980, 47: 329-34. [24] PUCK A. FAILURE ANALYSIS OF FRP LAMINATES BY MEANS OF PHYSICALLY BASED PHENOMENOLOGICAL MODELS [J]. Composites Science and Technology, 1998. [25] GHOLAMI M, AFRASIAB H, BAGHESTANI A M, et al. Mechanical and failure analysis of thick composites under hygrothermal conditions by a novel coupled hygro-thermo-mechanical multiscale algorithm [J]. Composites Science and Technology, 2022. [26] 张家豪, 韩啸, 张宇翔, 等. 湿热老化后CFRP力学性能的细观表征方法 [J/OL]. 机械工程学报, (2024-08-08) [2024-12-25]. http://kns.cnki.net/kcms/detail/11.2187.TH.20240808.0945.002.html. ZHANG J H, HAN X, ZHANG Y X, et al. Fine-scale characterization method for mechanical properties of CFRP after moisture-heat aging [J/OL]. Journal of Mechanical Engineering, (2024-08-08) [2024-12-25]. http://kns.cnki.net/kcms/detail/11.2187.TH.20240808.0945.002.html. [27] 伊文昭, 刘璐璐, 徐凯龙, 等. 考虑湿热老化的单向纤维增强复合材料纵向脱粘行为的数值模拟 [J/OL].复合材料科学与工程, (2024-04-16) [2024-12-25]. http://kns.cnki.net/kcms/detail/10.1683.TU.20240415.1031.002.html. YI W Z, LIU L L, XU K L, et al. Numerical simulation of longitudinal debonding behavior of unidirectional fiber-reinforced composites considering hygrothermal aging [J/OL]. Composites Science and Engineering, (2024-04-16) [2024-12-25]. http://kns.cnki.net/kcms/detail/10.1683.TU.20240415.1031.002.html. [28] 任仲豪, 徐双喜, 李鲤, 等. 复合材料单向层合板循环载荷下刚度退化研究[J/OL].华中科技大学学报(自然科学版), (2024-09-29) [2024-12-25]. https://doi.org/10.13245/j.hust.250450. REN Z H, XU S X, LI L, et al. Study on stiffness degradation of composite unidirectional laminates under cyclic loading [J/OL]. Journal of Huazhong University of Science and Technology (Natural Science Edition), (2024-09-29) [2024-12-25]. https://doi.org/10.13245/j.hust.250450. [29] 李海嶙. 海洋服役环境下复合材料干涉连接结构力学行为演化机理研究 [D]. 西北工业大学, 2019. LI H J. Study on the Mechanism of Evolution of Mechanical Behavior of Composite Interference Connected Structures in Marine Service Environment [D]. Northwestern Polytechnical University, 2019 (in Chinese). [30] 赖家美, 薛肖妹, 彭泽, 等. 经湿热环境处理的改性CFRP的吸湿与低速冲击实验研究 [J/OL].复合材料学报, (2024-11-11) [2024-12-25]. https://doi.org/10.13801/j.cnki.fhclxb.20241111.002. LAI J M, XUE X M, PENG Z, et al. Experimental study on moisture absorption and low velocity impact of modified CFRP treated with humid and hot environment [J]. Journal of Composite Materials, (2024-11-11) [2024-12-25]. https://doi.org/10.13801/j.cnki.fhclxb.20241111.002. [31] MENG M, RIZVI M J, LE H R, et al. Multi-scale modelling of moisture diffusion coupled with stress distribution in CFRP laminated composites [J]. Composite Structures, 2016. [32] ROCHA I B C M, VAN DER MEER F P, NIJSSEN R P L, et al. A multiscale and multiphysics numerical framework for modelling of hygrothermal ageing in laminated composites [J]. International Journal for Numerical Methods in Engineering, 2017. [33] GHOLAMI M, AFRASIAB H, BAGHESTANI A M, et al. Hygrothermal degradation of elastic properties of fiber reinforced composites: A micro-scale finite element analysis [J]. Composite Structures, 2021. [34] SHAH S Z H, LEE J, MEGAT-YUSOFF P S M, et al. Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects [J]. Composite Structures, 2023. [35] ZOUGGAR K, GUERRAICHE K, LOUSDAD A. Numerical and predictive analysis of the low-velocity impact response of UD composite plate under a controlled environment [J]. Composite Structures, 2022. [36] ASTM. Standard Practice for Preparation of Substitute Ocean Water: D1141 ? 98 (2021) [S]. West Conshohocken: American Society for Testing and Materials, 2021. [37] ASTM. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM D5229/D5229M-14 [S]. West Conshohocken: American Society for Testing and Materials, 1992. [38] ASTM. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials: ASTM D3039/D3039M-17 [S]. West Conshohocken: American Society for Testing and Materials, 2017. [39] ANDREW J J, DHAKAL H N. Influence of Seawater Ageing on the Physical and Mechanical Properties of the Natural Fiber-Reinforced Composites [M]//MUTHUKUMAR C, KRISHNASAMY S, THIAGAMANI S M K, et al. Aging Effects on Natural Fiber-Reinforced Polymer Composites: Durability and Life Prediction. Singapore; Springer Nature Singapore. 2022: 335-55. [40] 许良, 涂宜鸣, 崔浩, 等. 海水环境下老化周期对T800碳纤维/环氧树脂复合材料的影响 [J]. 材料工程, 2022, 50(12) : 89-94. XU L, TU Y M, CUI H, et al. Effect of aging cycle on T800 carbon fiber/epoxy composites under seawater environment [J]. Materials Engineering, 2022, 50(12) : 89-94 (in Chinese).
文章导航

/