基于深度学习的飞行器外形快速生成研究

  • 王永海 ,
  • 李昊歌 ,
  • 李嘉鑫 ,
  • 段毅 ,
  • 田川 ,
  • 郭灵犀 ,
  • 吴旭生
展开
  • 1. 中国运载火箭技术研究院
    2. 空间物理重点实验室
    3. 中国运载火箭技术研究院空间物理重点实验室

收稿日期: 2024-12-04

  修回日期: 2025-03-12

  网络出版日期: 2025-03-12

Rapid generation of aircraft shape based on deep learning

  • WANG Yong-Hai ,
  • LI Hao-Ge ,
  • LI Jia-Xin ,
  • DUAN Yi ,
  • TIAN Chuan ,
  • GUO Ling-Xi ,
  • WU Xu-Sheng
Expand

Received date: 2024-12-04

  Revised date: 2025-03-12

  Online published: 2025-03-12

摘要

飞行器气动布局设计技术是发展先进飞行器和实现飞行器性能跨代提升的重要研究方向之一。传统飞行器气动布局设计存在气动构型选型困难、过于依赖设计人员经验的问题,同时,当前的气动外形参数化方法难以突破预设定的气动构型方案,在气动布局优化设计过程中仅能对同一气动构型的外形参数进行优化调整,需设计人员反复开展选型迭代与优化,导致飞行器气动布局设计周期长,且难以获取最优气动外形,制约了短平快的高效方案论证。本文提出并发展了一种基于图像的飞行器外形生成框架,采用深度行进四面体方法和可微分渲染器,利用神经网络强大的非线性拟合能力实现了飞行器气动外形快速智能生成。飞行器生成外形表面光滑且具有高分辨率,尺寸包络可控,具有工程可用性,无需进行去噪操作。

本文引用格式

王永海 , 李昊歌 , 李嘉鑫 , 段毅 , 田川 , 郭灵犀 , 吴旭生 . 基于深度学习的飞行器外形快速生成研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31614

Abstract

Aerodynamic configuration design technology for aircraft is one of the critical research directions for developing advanced aircraft and achieving generational leaps in performance. Traditional aerodynamic layout design faces challenges such as difficulties in selecting aerodynamic configurations and over-reliance on designer’s experience. Moreover, current aerodynamic shape parameterization methods struggle to break through pre-defined aerodynamic configuration schemes, limiting optimization to adjusting parameters within the same aerodynamic configuration during the design process. This necessitates repeated iterations and optimizations by designers, leading to prolonged design cycles and difficulties in obtaining optimal aerodynamic shapes, thereby hindering efficient and rapid scheme evaluation. This paper proposes and develops an image-based aircraft shape generation framework, employing deep marching tetrahedra methods and differentiable renderers. Leveraging the powerful nonlinear fitting capabilities of neural networks, it achieves rapid and intelligent generation of aerodynamic shapes. The generated aircraft surfaces are smooth, high-resolution, and controllable in dimensional envelope, offering engineering usability without the need for denoising operations.
文章导航

/