集成多旋翼气动干扰的UAM飞行动力学模型

  • 王冶平 ,
  • 吉洪蕾 ,
  • 康清宇 ,
  • 邓皓轩 ,
  • 王畅
展开
  • 1. 重庆大学
    2. 重庆大学航空航天学院
    3. 中国空气动力研究与发展中心

收稿日期: 2024-09-30

  修回日期: 2025-02-13

  网络出版日期: 2025-02-18

基金资助

国家自然科学基金;重庆市自然科学基金;中国空气动力研究与发展中心旋翼空气动力学重点实验室研究开放课题

Integration of multirotor aerodynamic interference in UAM flight dynamics model

  • WANG Ye-Ping ,
  • JI Hong-Lei ,
  • KANG Qing-Yu ,
  • DENG Hao-Xuan ,
  • WANG Chang
Expand

Received date: 2024-09-30

  Revised date: 2025-02-13

  Online published: 2025-02-18

Supported by

National Natural Science Foundation of China;Natural Science Foundation of Chongqing, China;Open Project of the Key Laboratory of Rotor Aerodynamics, China Aerodynamics Research and Development Center

摘要

针对多旋翼电动垂直起降飞行器气动干扰强、现有方法难以快速高效分析其对飞行器飞行性能及飞行品质影响的难题,发展了一种集成多旋翼气动干扰的UAM(Urban Air Mobility)飞行动力学模型。首先,综合经典涡流理论与旋翼动态入流模型,建立了适于飞行力学分析的多旋翼诱导速度动态入流模型,并计入旋翼挥舞与机体刚性耦合运动的影响,形成集成多旋翼气动干扰的飞行动力学模型。然后,通过与国外文献数据对比验证本文模型的准确性,并分析了多旋翼气动干扰对飞行器平衡特性和需用功率特性的影响。最后,采用小扰动线化模型研究了多旋翼气动干扰对飞行器稳定性的影响。结果表明:旋翼间气动干扰主要影响飞行器中低速飞行状态的飞行性能和飞行品质。气动干扰导致前旋翼需用功率略微降低、后旋翼需用功率显著增加,且显著改变了飞行器的纵向操纵特性。多旋翼气动干扰显著增强了悬停/低速飞行的速度和航向静稳定性,并提高了中速飞行的横向静稳定性,但导致迎角静稳定性转为不稳定,进而使沉浮模态和螺旋模态的动稳定性变差。

本文引用格式

王冶平 , 吉洪蕾 , 康清宇 , 邓皓轩 , 王畅 . 集成多旋翼气动干扰的UAM飞行动力学模型[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31280

Abstract

Addressing the challenge of strong aerodynamic interference in multi-rotor electric vertical take-off and landing (eV-TOL) aircraft while existing methods cannot quickly and efficiently analyze its impact on flight performance and flight quality, an Urban Air Mobility (UAM) flight dynamics model integrated with multi-rotor aerodynamic interference has been developed. First, by combining classical vortex theory and dynamic inflow model, a dynamic inflow model suitable for flight dynamics analysis of multirotor is established, accounting for the effects of coupling between rotor flapping and rigid-body motion, thus forming a flight dynamics model that incorporates multirotor aerodynamic inter-ference. Then, the accuracy of this model is validated through comparison with data from international literature, and the impact of multirotor aerodynamic interference on the equilibrium characteristics and required power characteris-tics of the aircraft is analyzed. Finally, a small-disturbance linearized model is used to study the effect of multirotor aerodynamic interference on the stability of the aircraft. The results show that aerodynamic interference between rotors mainly affects the flight performance and handling qualities of the aircraft in low- to medium-speed flight con-ditions. Aerodynamic interference slightly reduces the required power of the front rotors while significantly increas-ing that of the rear rotors, substantially altering the aircraft's longitudinal control characteristics. Multirotor aerody-namic interference significantly enhances the speed and yaw static stability during hover/low-speed flight and im-proves the lateral static stability in medium-speed flight; however, it causes the angle-of-attack static stability to be-come unstable, which, in turn, degrades the dynamic stability of the heave mode and spiral mode.

参考文献

[1]邓景辉.电动垂直起降飞行器的技术现状与发展[J].航空学报, 2024, 45(05):55-77
[2]DENG J H.Technical status and development of electric vertical take-off and landing aircraft[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(05):55-77
[3]ZHOU P, CHEN R L, YUAN Y, et al.Aerodynamic interference on trim characteristics of quad-tiltrotor air-craft[J].Aerospace, 2022, 9(5):262-
[4]王永杰.交叉式双旋翼直升机飞行特性研究[D]. 南京: 南京航空航天大学, 2021: 7-14.
[5]WANG Y J.Research on flight characteristics of inter-meshing rotor helicopter[D]. Nanjing: Nanjing Universi-ty of Aeronautics and Astronautics, 2021: 7-14(in Chi-nese).
[6]张夏阳, 罗彬, 招启军, 等.倾转四旋翼机多涡系气动干扰非定常特性[J/OL]. 航空动力学报, 1-16[2024-09-04]. https://doi.org/10.13224/j.cnki.jasp.20240216.
[7]ZHANG X Y, LUO B, ZHAO Q J, et al.Unsteady aer-odynamic interference of tilt-quadrotor due to multi-vortex effect[J/OL]. Journal of Aerospace Power, 1-16[2024-09-04](in Chinese).
[8]SAGAGA J, LEE S.CFD hover predictions for the side-by-side urban air taxi concept rotor[C]//AIAA AVIATION 2020 FORUM. 2020: 2795.
[9]QI H T, XU G H, LU C L, et al.Computational investi-gation on unsteady loads of high-speed rigid coaxial ro-tor with high-efficient trim model[J].International Jour-nal of Aeronautical and Space Sciences, 2019, 20(1):16-30
[10]QI H T, XU G H, LU C L, et al.A study of coaxial rotor aerodynamic interaction mechanism in hover with high-efficient trim model[J][J].Aerospace Science and Technology, 2019, 84:1116-1130
[11]RUDDELL A J.Advancing blade concept (ABCTM) development[J].Journal of the American Helicopter So-ciety, 1977, 22(1):13-23
[12]RUDDELL A J, MACRINO J A.Advancing blade con-cept (ABC) high speed development[C]//American Heli-copter Society 36th Annual Forum, Alexandria, VA: The AHS International, Inc., 1980.
[13]聂博文, 王亮权, 黄志银, 等.复合式高速无人直升机飞行动力学建模与控制策略设计[J].航空学报, 2024, 45(09):129-148
[14]NIE B W, WANG L Q, HUANG Z Y, et al.Flight dy-namics modeling and control scheme design of com-pound high-speed unmanned helicopters[J].Acta Aero-nautica et Astronautica Sinica, 2024, 45(9):129-148
[15]王梓旭, 李攀, 王冰, 等.倾转旋翼飞行器运动稳定性变化规律及其影响机理[J/OL].[J]., 2024, :1-15
[16]WANG Z X, LI P, WANG B, et al.Variation of tilt-rotor aircraft motion stability and its influence mechanism.[J].Journal of Aerospace Power, , :1-15
[17]王梓旭, 李攀, 鲁可, 等.共轴刚性旋翼高速直升机配平策略优化设计[J].航空学报, 2024, 45(09):262-279
[18]WANG Z X, LI P, LU K, et al.Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(9):262-279
[19]PARK S H, IM B, LEE D, et al.Aerodynamic interfer-ence analysis for a nonoverlapping multirotor UAV based on dynamic vortex tube[J].Journal of the American Heli-copter Society, 2023, 68(4):42010-42030
[20]袁野, 陈仁良, 李攀.基于涡环尾迹模型的共轴刚性旋翼直升机飞行动力学建模[J].航空学报, 2018, 39(3):14-22
[21]YUAN Y, CHEN R L, LI P.Flight dynamic modelling for coaxial rigid rotor helicopter using vortex-ring wake model[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(3):14-22
[22]赵珅宁, 李攀, 张亚飞, 等.一种新的旋翼动态尾迹模型研究[J].南京航空航天大学学报, 2016, 48(2):212-217
[23]ZHAO S N, LI P, ZHANG Y F, et al.Study on new ro-tor dynamic wake model[J].Journal of Nanjing Univer-sity of Aeronautics & Astronautics, 2016, 48(2):212-217
[24]SINGH P, FRIEDMANN P P.Application of vortex methods to coaxial rotor wake and load calcula-tions[C]//55th AIAA Aerospace Sciences Meeting. Reston, VA: AIAA, 2017.
[25]ZHAO J G, HE C J.A finite state dynamic wake model enhanced with vortex particle method–derived modeling parameters for coaxial rotor simulation and analysis[J].Journal of the American Helicopter Society, 2016, 61(2):1-9
[26]KONG Y B, PRASAD J V R, SANKAR L N, et al.Finite state inflow flow model for coaxial rotor configu-ration[J].Journal of the American Helicopter Society, 2020, 65(3):1-11
[27]GUNER F, PRASAD J V R, PETERS D A.An approx-imate finite state dynamic wake model for predictions of inflow below the rotor[J].Journal of the American Heli-copter Society, 2021, 66(3):1-10
[28]王冶平, 吉洪蕾, 周攀, 等.基于涡管模型的倾转四旋翼气动干扰快速分析[J/OL]. 航空学报, 1-17[2024-09-25]. https://link.cnki.net/urlid/11.1929.v.20240923.1116.014.
[29]WANG Y P, JI H L, ZHOU P, et al.Fast analysis of aer-odynamic interference for quad-tiltrotor based on vortex tube model[J/OL]. Acta Aeronautica et Astronautica Sini-ca, 1-17[2024-09-25](in Chinese).
[30]VATISTAS G H.New model for intense self-similar vortices[J].Journal of Propulsion and Power, 1998, 14(4):462-469
[31]VATISTAS G H, KOZEL V, MIH W C.A simpler model for concentrated vortices[J].Experiments in Fluids, 1991, 11(1):73-76
[32]PETERS D A, HAQUANG N.Dynamic inflow for practical applications[J].American Helicopter Society, Journal, 1988, 33(4):64-68
[33]陈仁良, 李攀, 吴伟, 等.直升机飞行动力学数学建模问题[J].航空学报, 2017, 38(07):6-22
[34]CHEN R L, LI P, WU W, et al.A review of mathematical modeling of helicopter flight dynamics[J].Acta Aero-nautica et Astronautica Sinica, 2017, 38(07):6-22
[35]QI H R, QI X H.Research on quadrotor UAV based on linear active disturbance rejection control technique under wind-disturbance[J].Flight Dynamics, 2018, 36(2):21-25
[36]JOHNSON W, SLIVA C.NASA concept vehicles and the engineering of advanced air mobility aircraft[J][J].The Aeronautical Journal., 2022, 126(1295):59-91
[37]CARLOS A, MALPICA.Handling qualities analysis of blade pitch and rotor speed controlled eVTOL quadrotor concepts for Urban air mobility[C]//VFS International Powered Lift Conference, San Jose, CA, United states: Vertical Flight Society, 2020: 118-132.
文章导航

/