超声速单/双矩形喷流气动噪声数值研究

  • 查君培 ,
  • 陈保 ,
  • 吴飞 ,
  • 李伟鹏
展开
  • 1. 上海交通大学航空航天学院
    2.

收稿日期: 2024-10-28

  修回日期: 2025-01-09

  网络出版日期: 2025-01-10

Numerical research on aeroacoustics of supersonic single/twin rectangular jets

  • CHA Jun-Pei ,
  • CHEN Bao ,
  • WU Fei ,
  • LI Wei-Peng
Expand

Received date: 2024-10-28

  Revised date: 2025-01-09

  Online published: 2025-01-10

摘要

矩形喷管因其优异的推力矢量控制和隐身性能在军用飞机设计中日益受到重视,而双喷流耦合干扰是一个很有吸引力的气动声学问题,其噪声特征和发声机理仍不十分明确。本文采用高精度数值格式和隐式大涡模拟方法,对超声速欠膨胀单/双矩形喷流开展数值仿真研究,预测的单喷流流声特性与实验结果吻合较好。研究结果表明,当双喷流间距为3.5h时,双喷流相互作用对喷流内部结构与剪切层发展的影响并不显著,但单/双喷流总声压级分布和声指向特征存在明显差异,与单喷流相比,双喷流啸声频率略微减小,啸声强度有较大幅度提升。采用傅里叶模态分解和谱本征正交分解提取流场相干结构,单喷流中呈现螺旋模态,而双喷流中切换为沿短轴方向的摆动模态,且两喷流摆动相位同步。模态分析进一步指出了啸声频率和强度上的变化与声源位置偏移的关联。

本文引用格式

查君培 , 陈保 , 吴飞 , 李伟鹏 . 超声速单/双矩形喷流气动噪声数值研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31447

Abstract

Rectangular nozzles are increasingly valued in military aircraft design due to their excellent thrust vectoring control and stealth performance. However, twin jet coupling is an attractive aeroacoustic problem, its noise characteristics and sound generation mechanism are still not well understood. High-precision numerical schemes and implicit large eddy simulation methods are used to conduct numerical simulations of supersonic under-expanded sin-gle/twin rectangular jets, with the predicted flow and acoustic characteristics of the single jet showing good agree-ment with experimental results. The findings indicate that when twin jet spacing is 3.5h, the interaction between twin jets has little impact on the internal structure and shear layer development of the jets, but there are significant differ-ences in the overall sound pressure level distribution and the noise directivity between single and twin jets. Com-pared with the single jet, the screech frequency of the twin jets is slightly reduced, while the intensity is significantly increased. Fourier mode decomposition and spectral proper orthogonal decomposition are employed to extract co-herent structures in the flow field, revealing a helical mode in the single jet, while in the twin jets, the mode switches to a flapping mode along the minor axis with the two jets oscillating in phase. Modal analysis further highlights the relationship between changes in screech frequency and intensity and the shift in the sound source location.

参考文献

[1] WU K, KIM T H, KIM H D. Visualization and analysis on the thrust vectoring control in three-dimensional dual-throat nozzles[J]. Journal of Visualization, 2021, 24: 891-915. [2] ALKISLAR M B, KROTHAPALLI A, LOURENCO L M. Structure of a screeching rectangular jet: A stereoscopic particle image velocimetry study[J]. Journal of Fluid Mechanics, 2003, 489: 121-154. [3] KROTHAPALLI A, BAGANOFF D, KARAMCHETI K. On the mixing of a rectangular jet[J]. Journal of Fluid Mechanics, 1981, 107: 201-220. [4] DUSA D, SPEIR D, ROWE R, et al. Advanced technology exhaust nozzle development[C]//19th Joint Propulsion Conference. Reston: AIAA, 1983. [5] WIEGAND C. F-35 air vehicle technology overview[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018. [6] EDGINGTON-MITCHELL D, OBERLEITHNER K, HONNERY D R, et al. Coherent structure and sound production in the helical mode of a screeching axisymmetric jet[J]. Journal of Fluid Mechanics, 2014, 748: 822-847. [7] MIXSON J, ROUSSOS L. Acoustic fatigue: Overview of activities at nasa langley: NASA-TM-89143[R]. 1987. [8] BERNDT D. Dynamic pressure fluctuations in the internozzle region of a twin-jet nacelle[J]. SAE transactions, 1984, 93. [9] TAM C K W. The shock-cell structures and screech tone frequencies of rectangular and non-axisymmetric supersonic jets[J]. Journal of Sound and Vibration, 1988, 121: 135-147. [10] GOSS A E, VELTIN J, LEE J, et al. Acoustic measurements of high-speed jets from rectangular nozzle with thrust vectoring[J]. AIAA Journal, 2009, 47: 1482-1490. [11] GOJON R, GUTMARK E, MIHAESCU M. Antisymmetric oscillation modes in rectangular screeching jets[J]. AIAA Journal, 2019, 57: 3422-3441. [12] RAMAN G. Screech tones from rectangular jets with spanwise oblique shock-cell structures[J]. Journal of Fluid Mechanics, 1997, 330: 141-168. [13] MENON N, SKEWS B W. Shock wave configurations and flow structures in non-axisymmetric underexpanded sonic jets[J]. Shock Waves, 2010, 20: 175-190. [14] ZAMAN K B M Q. Axis switching and spreading of an asymmetric jet: The role of coherent structure dynamics[J]. Journal of Fluid Mechanics, 1996, 316: 1-27. [15] VALENTICH G, UPADHYAY P, KUMAR R. Mixing characteristics of a moderate aspect ratio screeching supersonic rectangular jet[J]. Experiments in Fluids, 2016, 57: 71. [16] CHEN Z, WU J-H, REN A D, et al. Mode-switching and nonlinear effects in supersonic jet noise[J]. AIP Advances, 2018, 8: 015126. [17] GUTMARK E, SCHADOW K C, BICKER C J. Near acoustic field and shock structure of rectangular supersonic jets[J]. AIAA Journal, 1990, 28: 1163-1170. [18] SHIH C, KROTHAPALLI A, GOGINENI S. Experimental observations of instability modes in a rectangular jet[J]. AIAA Journal, 1992, 30: 2388-2394. [19] RAMAN G, RICE E J. Instability modes excited by natural screech tones in a supersonic rectangular jet[J]. Physics of Fluids, 1994, 6: 3999-4008. [20] RAMAN G, PANICKAR P, CHELLIAH K. Aeroacoustics of twin supersonic jets: A review[J]. International Journal of Aeroacoustics, 2012, 11: 957-984. [21] ZILZ D, WLEZIEN R. The sensitivity of near-field acoustics to the orientation of twin two-dimensional supersonic nozzles[C]//26th Joint Propulsion Conference. Reston: AIAA, 1990. [22] RAMAN G, TAGHAVI R A Y. Coupling of twin rectangular supersonic jets[J]. Journal of Fluid Mechanics, 1998, 354: 123-146. [23] KARNAM A, BAIER F, GUTMARK E J. Nature of flow field & acoustics of twin supersonic rectangular jets[C]//AIAA Scitech 2020 Forum. Reston: AIAA, 2020. [24] KARNAM A, BAIER F, GUTMARK E J, et al. An investigation into flow field interactions between twin supersonic rectangular jets[C]//AIAA Scitech 2021 Forum. Reston: AIAA, 2021. [25] KARNAM A, AHN M, GUTMARK E, et al. Effects of screech on jet coupling in twin square jets[C]//28th AIAA/CEAS Aeroacoustics 2022 Conference. Reston: AIAA, 2022. [26] JEUN J, WU G J, LELE S K, et al. Twin rectangular jet screech and coupling: Numerical study and validation[C]//AIAA Scitech 2021 Forum. Reston: AIAA, 2021. [27] JEUN J, KARNAM A, WU G J, et al. Aeroacoustics of twin rectangular jets including screech: Large-eddy simulations with experimental validation[J]. AIAA Journal, 2022, 60: 6340-6360. [28] AHN M, MIHAESCU M, KARNAM A, et al. Large-eddy simulations of flow and aeroacoustics of twin square jets including turbulence tripping[J]. Physics of Fluids, 2023, 35: 066105. [29] ESFAHANI A, WEBB N J, SAMIMY M. Control of coupling in twin rectangular supersonic jets[C]//AIAA Aviation 2021 Forum. Reston: AIAA, 2021. [30] ESFAHANI A, WEBB N J, SAMIMY M. Coupling modes in supersonic twin rectangular jets[C]//AIAA Scitech 2021 Forum. Reston: AIAA, 2021. [31] SAMIMY M, WEBB N, ESFAHANI A, et al. Perturbation-based active flow control in overexpanded to underexpanded supersonic rectangular twin jets[J]. Journal of Fluid Mechanics, 2023, 959: A13. [32] HEEB N S, MORA P, GUTMARK E J, et al. Investigation of the noise from a rectangular supersonic jet[C]//19th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2013. [33] KARNAM A, BAIER F, GUTMARK E J. Near field acoustic analysis of cold supersonic rectangular jets[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019. [34] CHEN B, QIANG X, WU F, et al. Implicit large-eddy simulation of an over-expanded screeching rectangular jet[J]. Chinese Journal of Aeronautics, 2024. [35] NONOMURA T, FUJII K. Effects of difference scheme type in high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2009, 228: 3533-3539. [36] NONOMURA T, IIZUKA N, FUJII K. Freestream and vortex preservation properties of high-order weno and wcns on curvilinear grids[J]. Computers & Fluids, 2010, 39: 197-214. [37] YOON S, JAMESON A. Lower-upper symmetric-gauss-seidel method for the euler and navier-stokes equations[J]. AIAA Journal, 1988, 26: 1025-1026. [38] FUREBY C, GRINSTEIN F F. Monotonically integrated large eddy simulation of free shear flows[J]. AIAA Journal, 1999, 37: 544-556. [39] SHUR M L, SPALART P R, STRELETS M K, et al. Analysis of jet-noise-reduction concepts by large-eddy simulation[J]. International Journal of Aeroacoustics, 2007, 6: 243-285. [40] NONOMURA T, NAKANO H, OZAWA Y, et al. Large eddy simulation of acoustic waves generated from a hot supersonic jet[J]. Shock Waves, 2019, 29: 1133-1154. [41] CODERONI M, LYRINTZIS A S, BLAISDELL G A. Large-eddy simulations analysis of supersonic heated jets with fluid injection for noise reduction[J]. AIAA Journal, 2019, 57: 3442-3455. [42] AHN M, MIHAESCU M. Effects of temperature on the characteristics of twin square jets by large eddy simulations[C]//AIAA Scitech 2022 Forum. Reston: AIAA, 2021. [43] KARNAM A, GUTMARK E, SALEEM M. Influence of nozzle geometry on screech instability closure[J]. Physics of Fluids, 2023, 35. [44] FFOWCS WILLIAMS J E, HAWKINGS D L, LIGHTHILL M J. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969, 264: 321-342. [45] SHUR M L, SPALART P R, STRELETS M K. Noise prediction for increasingly complex jets. Part i: Methods and tests[J]. International Journal of Aeroacoustics, 2005, 4: 213-245. [46] TAM C K W. Supersonic jet noise[J]. Annual Review of Fluid Mechanics, 1995, 27: 17-43. [47] EDGINGTON-MITCHELL D. Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets – a review[J]. International Journal of Aeroacoustics, 2019, 18: 118-188. [48] AHN M, LEE D-J, MIHAESCU M. A numerical study on near-field pressure fluctuations of symmetrical and anti-symmetrical flapping modes of twin-jet using a high-resolution shock-capturing scheme[J]. Aerospace Science and Technology, 2021, 119: 107147. [49] MERCIER B, CASTELAIN T, BAILLY C. Experimental characterisation of the screech feedback loop in underexpanded round jets[J]. Journal of Fluid Mechanics, 2017, 824: 202-229. [50] LI X, HE F, ZHANG X, et al. Shock motion and flow structure of an underexpanded jet in the helical mode[J]. AIAA Journal, 2019. [51] GAO J, XU X, LI X. Numerical simulation of supersonic twin-jet noise with high-order finite difference scheme[J]. AIAA Journal, 2017, 56: 290-300. [52] TOWNE A, SCHMIDT O T, COLONIUS T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[J]. Journal of Fluid Mechanics, 2018, 847: 821-867.
文章导航

/