[1]LIU D W, SUN J, HUANG D G, et al.Research on development status and technology trend of intelligent autonomous ammunition[C]//Journal of Physics: Con-ference Series, 2021, 1721(1): 012032.
[2]MEI J Z, YE M A, CHANG T.Multi-agent unmanned swarm combat architecture based on OODA loop[J].Advances in Computer, Signals and Systems, 2021, 5(1):81-87
[3]唐杨, 祝小平, 周洲, 等.一种基于攻击时间和角度控制的协同制导方法[J].航空学报, 2022, 43(1):324844-
[4]沈博, 武文亮, 杨刚, 等.基于群体的无人集群系统智能评价模型及方法[J].航空学报, 2023, 44(14):328003-
[5]李国飞, 朱国梁, 吕金虎, 等.主-从多飞行器三维分布式协同制导方法[J].航空学报, 2021, 42(11):524926-
[6]黎剑兵, 张双喜, 苏大亮, 等.一种多普勒域走动校正的斜视成像算法[J].宇航学报, 2016, 37(1):118-126
[7]汪俊澎, 李永祯, 邢世其, 等.合成孔径雷达电子干扰技术综述[J].信息对抗技术, 2023, 2(4-5):138-150
[8]Lü J H, CHEN G R.A new chaotic attractor coined[J].International Journal of Bifurcation and Chaos, 2002, 12(3):659-661
[9]YU W W, CHEN G R, Lü J H.On pinning synchroni-zation of complex dynamical networks[J].Automatica, 2009, 45(2):429-435
[10]ZHOU J, LU J A, Lü J H.Adaptive synchronization of an uncertain complex dynamical network[J].IEEE Transactions on Automatic Control, 2006, 51(4):652-656
[11]吴付杰, 王博文, 齐静雅.机载多孔径全景图像合成技术研究进展[J].航空学报, 2024, 45(24):530505-
[12]CARDILLO G P.On the use of the gradient to deter-mine bistatic SAR resolution[C]// International Sympo-sium on Antennas and Propagation Society, Merging Technologies for the 90' s. IEEE, 1990: 1032-1035.
[13]ENDER J H G, WALTERSCHEID I, BRENNER A R.New aspects of bistatic SAR: Processing and experi-ments[J]., 2004, 3: .[J].IEEE International Geoscience and Remote Sensing Symposium, 2004, 3:1758-1762
[14]KRIEGER G, MOREIRA A, FIEDLER H, et al.Tan-DEM-X: A satellite formation for high-resolution SAR interferometry[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3317-3341
[15]武俊杰, 孙稚超, 吕争.星源照射双多基地成像[J].雷达学报, 2023, 12(1):13-35
[16]WALTERSCHEID I, ENDER J H G, BRENNER A R, et al.Bistatic SAR processing and experiments[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2710-2717
[17]HUANG Y L, YANG J, WU J J, et al.Precise time fre-quency synchronization technology for bistatic radar[J].Journal of Systems Engineering and Electronics, 2008, 19(5):929-933
[18]WANG Y, LIU Y, LI Z, et al.High-resolution wide-swath imaging of spaceborne multichannel bistatic SAR with inclined geosynchronous illuminator[J].IEEE Geoscience and Remote Sensing Letters, 2017, 14(12):2380-2384
[19]BRENNER A R.Proof of concept for airborne SAR imaging with 5 cm resolution in X-band[C]//European Conference on Synthetic Aperture Radar. VDE, 2010: 1-4.
[20]LIU J, LI P, TU C, et al.Spatiotemporal change detec-tion of coastal wetlands using multi-band SAR coher-ence and synergetic classification[J].Remote Sensing, 2022, 14(11):2610-
[21]杨建宇.雷达对地成像技术多向演化趋势与规律分析[J].雷达学报, 2019, 8(6):669-692
[22]DENG H, LI Y, LIU M, et al.A space-variant phase filtering imaging algorithm for missile-borne BiSAR with arbitrary configuration and curved track[J].IEEE Sensors Journal, 2018, 18(8):3311-3326
[23]安道祥, 陈乐平, 冯东, 等.机载圆周成像技术研究[J].雷达学报, 2020, 9(2):221-242
[24]ZHANG Q, DONG Z, ZHANG Y, et al.GEO-UAV bistatic circular synthetic aperture radar: Concepts and technologies[C]//2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016: 4195-4198.
[25]DUQUE S, LóPEZ-DEKKER P, MERLANO J C, et al.Bistatic SAR tomography: Processing and experi-mental results[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010: 154-157.
[26]ZHANG S, GAO Y, XING M, et al.Ground moving target indication for the geosynchronous-low Earth or-bit bistatic multichannel SAR system[J]., 2021, 14: .[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:5072-5090
[27]AN H, WU J, HE Z, et al.Geosynchronous spaceborne-airborne multichannel bistatic SAR imaging using weighted fast factorized backprojection method[J].IEEE Geoscience and Remote Sensing Letters, 2019, 16(10):1590-1594
[28]李杭, 梁兴东, 张福博, 等.基于高斯混合聚类的阵列干涉三维成像[J].雷达学报, 2017, 6(6):630-639
[29]WANG R, DENG Y, ZHANG Z, et al.Double-channel bistatic SAR system with spaceborne illuminator for 2-D and 3-D SAR remote sensing[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4496-4507
[30]林玉川, 张剑云, 武拥军, 等.双基星载- 系统俯仰向处理技术[J].电子与信息学报, 2017, 39(10):2317-2324
[31]叶恺, 禹卫东, 王伟.一种双基星载 系统体制与处理方法[J].电子与信息学报, 2017, 39(11):2697-2704
[32]FOCSA A, ANGHEL A, DATCU M.A compressive-sensing approach for opportunistic bistatic SAR imag-ing enhancement by harnessing sparse multiaperture data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14.
[33]AN H, WU J, TEH K C, et al.Simultaneous moving and stationary target imaging for geosynchronous spaceborne-airborne bistatic SAR based on sparse sepa-ration[J].IEEE Transactions on Geoscience and Re-mote Sensing, 2020, 59(8):6722-6735
[34]丁赤飚, 仇晓兰, 徐丰, 等.合成孔径雷达三维成像—从层析、阵列到微波视觉[J].雷达学报, 2019, 8(6):693-709
[35]CEN X, SONG X, LI Y, et al.A deep learning-based super-resolution model for bistatic SAR im-age[C]//International Conference on Electronics, Cir-cuits and Information Engineering (ECIE). IEEE, 2021: 228-233.
[36]DAI H, DU L, WANG Y, et al.A modified CFAR algo-rithm based on object proposals for ship target detec-tion in SAR images[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1925-1929
[37]AN W, XIE C, YUAN X.An improved iterative censor-ing scheme for CFAR ship detection with SAR image-ry[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(8):4585-4595
[38]AGRAWAL A, MANGALRAJ P, BISHERWAL M A.Target detection in SAR images using SIFT[C]// IEEE International Symposium on Signal Processing and In-formation Technology (ISSPIT). IEEE, 2015: 90-94.
[39]KAPLAN L M.Improved SAR target detection via extended fractal features[J].IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2):436-451
[40]AI J, YANG X, SONG J, et al.An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery[J].IEEE Journal of Oceanic Engineer-ing, 2017, 43(1):267-279
[41]LENG X, JI K, YANG K, et al.A bilateral CFAR algo-rithm for ship detection in SAR images[J].IEEE Geo-science and Remote Sensing Letters, 2015, 12(7):1536-1540
[42]LENG X, JI K, XING X, et al.Area ratio invariant feature group for ship detection in SAR imagery[J].IEEE Journal of Selected Topics in Applied Earth Ob-servations and Remote Sensing, 2018, 11(7):2376-2388
[43]LI Y, CHENG M, PENG X, et al.Ship detection and recognition combing one‐dimensional range profile with SAR image[J].The Journal of Engineering, 2019, 2019(19):6252-6254
[44]NI J, LUO Y, WANG D, et al.Saliency-based SAR target detection via convolutional sparse feature en-hancement and Bayesian inference[J]. IEEE Transac-tions on Geoscience and Remote Sensing, 2023, 61: 5202015.
[45]KANG M, JI K, LENG X, et al.Contextual region-based convolutional neural network with multilayer fu-sion for SAR ship detection[J].Remote Sensing, 2017, 9(8):860-
[46]PEI J, HUANG Y, HUO W, et al.SAR automatic target recognition based on multiview deep learning frame-work[J].IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(4):2196-2210
[47]杜兰, 王梓霖, 郭昱辰, 等.结合强化学习自适应候选框挑选的目标检测方法[J].雷达学报, 2022, 11(5):884-896
[48]ZHOU Z, GUAN R, CUI Z, et al.Scale expansion pyr-amid network for cross-scale object detection in SAR images[C]//IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021: 5291-5294.
[49]ZHANG T, ZHANG X, KE X.Quad-FPN: A novel quad feature pyramid network for SAR ship detec-tion[J].Remote Sensing, 2021, 13(14):2771-
[50]CUI Z, LI Q, CAO Z, et al.Dense attention pyramid networks for multi-scale ship detection in SAR imag-es[J].IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):8983-8997
[51]李毅, 杜兰, 杜宇昂.基于特征分解卷积神经网络的图像目标检测方法[J].雷达学报, 2023, 12(5):1069-1080
[52]TAO W, XI C, XIANG W R, et al.Study on SAR target recognition based on support vector ma-chine[C]//Asian-Pacific Conference on Synthetic Aper-ture Radar. IEEE, 2009: 856-859.
[53]LIU K, WANG W, SUN Z.Recognition of SAR image based on combined templates[C]//IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2013: 284-287.
[54]LIU H, LI S.Decision fusion of sparse representation and support vector machine for SAR image target recognition[J]. Neurocomputing, 2013, 113: 97-104.
[55]SONG D, LIU L, ZHANG X, et al.A novel hog-based template matching method for SAR and optical im-age[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022: 951-954.
[56]FU K, DOU F Z, LI H C, et al.Aircraft recognition in SAR images based on scattering structure feature and template matching[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11):4206-4217
[57]DING J, CHEN B, LIU H, et al.Convolutional neural network with data augmentation for SAR target recog-nition[J].IEEE Geoscience and remote sensing letters, 2016, 13(3):364-368
[58]CHEN S, WANG H.SAR target recognition based on deep learning[C]//International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2014: 541-547.
[59]GAO F, HUANG T, WANG J, et al.Combining deep convolutional neural network and SVM to SAR image target recognition[C]//IEEE International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data. IEEE, 2017: 1082-1085.
[60]ZHANG T, ZHANG X, KE X, et al.HOG-ShipCLSNet: A novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-22.
[61]ZENG Z, SUN J, HAN Z, et al.SAR automatic target recognition method based on multi-stream complex-valued networks[J]. IEEE Transactions on geoscience and remote sensing, 2022, 60: 1-18.
[62]ZHANG J, XING M, XIE Y.FEC: A feature fusion framework for SAR target recognition based on elec-tromagnetic scattering features and deep CNN fea-tures[J].IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3):2174-2187
[63]LI Y, DU L.Design of the physically interpretable SAR target recognition network combined with electromag-netic scattering characteristics[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022: 4988-4991.
[64]CUI Z, TANG C, CAO Z, et al.SAR unlabeled target recognition based on updating CNN with assistant de-cision[J].IEEE Geoscience and Remote Sensing Let-ters, 2018, 15(10):1585-1589
[65]INKAWHICH N A, DAVIS E K, INKAWHICH M J, et al.Training SAR-ATR models for reliable operation in open-world environments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3954-3966.
[66]FU K, ZHANG T, ZHANG Y, et al.Few-shot SAR target classification via metalearning[J]. IEEE Transac-tions on Geoscience and Remote Sensing, 2021, 60: 1-14.
[67]HUANG P H, XIA X G, WANG L Y, et al.Imaging and relocation for extended ground moving targets in mul-tichannel SAR-GMTI systems. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-24.
[68]YANG J, LIU C, WANG Y F.Imaging and parameter estimation of fast-moving targets with single-antenna SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11: 529-533.
[69]HUANG P H, XIA X G, GAO Y S, et al.Ground mov-ing target re-focusing in SAR imagery based on RFRT-FrFT[J].IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):5476-5492
[70]LI R J, GAN D, XIE S Y, et al.Stability and perfor-mance analysis of the compressed Kalman filter algo-rithm for sparse stochastic systems[J].Science China Technological Sciences, 2023, 67(2):380-394
[71]LI Z Y, WU J J, HUANG Y L, et al.Ground-moving target imaging and velocity estimation based on mis-matched compression for bistatic forward-looking SAR[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3277-3291
[72]ZHANG S, ZHOU F, SUN G C, et al.A new SAR–GMTI high-accuracy focusing and relocation method using instantaneous interferometry[J].IEEE Transac-tions on Geoscience and Remote Sensing, 2016, 54(9):5564-5577
[73]WANG J, LENG X G, SUN Z Z, et al.Fast and accu-rate refocusing for moving ships in SAR imagery based on FrFT[J].Remote Sensing, 2023, 15(14):3656-
[74]WANG J, LENG X G, SUN Z Z, et al.Refocusing swing ships in SAR imagery based on spatial-variant defocusing property[J].Remote Sensing, 2023, 15(12):3159-
[75]KANG M S, KIM K T.Ground moving target imaging based on compressive sensing framework with single-channel SAR[J]. IEEE Sensors Journal, 2020, 20:1238-1250.
[76]LI Z Y, WU J J, LI W C, et al.Dual-channel DPCA technique in bistatic forward-looking SAR for moving target detection and imaging[C]//Proceedings of 2011 IEEE CIE International Conference on Radar, Chengdu, 2011: 942-945.
[77]LI Z Y, WU J J, HUANG Y L, et al.A ground moving target detection and imaging method in Doppler-rate domain for Bistatic forward-looking SAR[C]//2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 2014:2826-2829.
[78]LI Z Y, WU J J, YI Q Y, et al.Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Sys-tems, 2015, 51:1000-1016.
[79]LENG X G, JI K F, KUANG G Y.Ship detection from raw SAR echo data[J]. IEEE Transactions on Geosci-ence and Remote Sensing, 2023. 61:1-11.
[80]LENG X G, JI K F, ZHOU S L et al.Discriminating ship from radio frequency interference based on noncircularity and non-gaussianity in sentinel-1 SAR imagery[J]. IEEE Transactions on Geoscience and Re-mote Sensing, 2019, 57:352-363.
[81]JOSHI S K, BAUMGARTNER S V.Training data se-lection strategy for CFAR ship detection in range-compressed radar data[C]//2019 International Radar Conference (RADAR), Toulon, France, 2019:1-5.
[82]ZHANG Q, WU J, LI C, et al.Study of the effects of non-square resolutions of bistatic SAR on template matching performance[C]//IEEE International Geosci-ence and Remote Sensing Symposium. IEEE, 2018: 557-560.
[83]CURLANDER J C.Location of spaceborne SAR im-agery[J]. IEEE Transactions on Geoscience and Re-mote Sensing, 1982 (3): 359-364.
[84]JIAO N, WANG F, YOU H, et al.Geo-positioning accu-racy improvement of multi-mode GF-3 satellite SAR imagery based on error sources analysis[J].Sensors, 2018, 18(7):2333-
[85]ZHOU G, HE C, YUE T, et al.An improved method of AGM for high precision geolocation of SAR images[J].The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2018, 42(3):2479-2485
[86]吴元.一种基于参数更新的机载图像目标定位方法[J].电子与信息学报, 2019, 41(5):1063-1068
[87]丁赤飚, 刘佳音, 雷斌, 等.高分三号卫星系统级几何定位精度初探[J].雷达学报, 2017, 6(1):11-16
[88]EINEDER M, MINET C, STEIGENBERGER P, et al.Imaging geodesy—Toward centimeter-level ranging accuracy with TerraSAR-X[J].IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(2):661-671
[89]CONG X, BALSS U, EINEDER M, et al.Imaging geodesy—Centimeter-level ranging accuracy with Ter-raSAR-X: An update[J].IEEE Geoscience and Remote Sensing Letters, 2012, 9(5):948-952
[90]LI J, YANG Q, LI Z, et al.A blind localization method based on monostatic equivalent for bistatic SAR[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022: 1836-1839.
[91]LI J, YANG Q, LI Z, et al.A blind localization method with multi-point scatterer targets for BiSAR[C]//2021 CIE International Conference on Radar (Radar). IEEE, 2021: 759-762.
[92]FU X, CHEN M.Missile location based on missile-borne bistatic SAR[C]//International Symposium on Computational Intelligence and Design. IEEE, 2014, 2: 232-235.
[93]梅海文, 孟自强, 李亚超.双基前视几何定位及同步误差分析[J].电子与信息学报, 2018, 40(4):882-889
[94]LI X R, JILKOV V P.Survey of maneuvering target trackingPart V. Multiple-model methods[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4):1255-1321
[95]SU Y, HE Z, DENG M, et al.Collaborative Resource Allocation and Beampattern Optimization for Maneu-vering Targets Tracking with Distributed Radar Net-work[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022: 7669-7672.
[96]OLFATI-SABER R, JALALKAMALI P.Collaborative target tracking using distributed Kalman filtering on mobile sensor networks[C]//American Control Confer-ence. IEEE, 2011: 1100-1105.
[97]SUGANYA S.A cluster-based approach for collabora-tive target tracking in wireless sensor net-works[C]//International Conference on Emerging Trends in Engineering and Technology. IEEE, 2008: 276-281.
[98]YANG Q, LI Z Y, LI J A, et al.A novel bistatic SAR maritime ship target imaging algorithm based on cubic phase time-scaled transformation[J].Remote Sensing, 2023, 15(5):1330-
[99]WU J, YANG J, YANG H, et al.Optimal geometry configuration of bistatic forward-looking SAR[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009: 1117-1120.
[100]AN H, WU J, SUN Z, et al.Flight parameter design for translational invariant bistatic forward-looking SAR based on multiobjective particle swarm optimiza-tion[C]//CIE International Conference on Radar (RADAR). IEEE, 2016: 1-5.
[101]LU Z, WANG Y, XU M, et al.Spacecraft formation design for bistatic SAR with GEO illuminator and LEO receiver[C]//IEEE International Geoscience and Re-mote Sensing Symposium. IEEE, 2018: 4451-4454.
[102]LI N, HOU Y, XING L, et al.An optimization method for distributed InSAR satellite formation configura-tion[C]//China International SAR Symposium (CISS). IEEE, 2022: 1-4.
[103]SCHARF D P, HADAEGH F Y, PLOEN S R.A survey of spacecraft formation flying guidance and control. part ii: control[C]//Proceedings of the 2004 American control conference. IEEE, 2004, 4: 2976-2985.
[104]Lü J H, CHEN G R.A time-varying complex dynam-ical network model and its controlled synchronization criteria[J].IEEE Transactions on Automatic Control, 2005, 50(6):841-846
[105]ZHOU J, LU J A, Lü J H.Pinning adaptive synchroni-zation of a general complex dynamical[J].Automatica, 2008, 44(4):996-1003
[106]HU Q, SHI Y, WANG C.Event-based formation coor-dinated control for multiple spacecraft under commu-nication constraints[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(5):3168-3179
[107]LIPPAY Z S, HOAGG J B.Formation control with time-varying formations,bounded controls,and local collision avoidance[J].IEEE Transactions on Control Systems Technology, 2021, 30(1):261-276
[108]SUI Z, PU Z, YI J, et al.Formation control with colli-sion avoidance through deep reinforcement learning using model-guided demonstration[J].IEEE Transac-tions on Neural Networks and Learning Systems, 2020, 32(6):2358-2372
[109]LIU H, MENG Q, PENG F, et al.Heterogeneous for-mation control of multiple UAVs with limited-input leader via reinforcement learning[J]. Neurocomputing, 2020, 412: 63-71.
[110]ZHOU Y, LU F, PU G, et al.Adaptive leader-follower formation control and obstacle avoidance via deep re-inforcement learning[C]//IEEE/RSJ International Con-ference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4273-4280.
[111]田磊, 董希旺, 赵启伦, 等.异构集群系统分布式自适应输出时变编队跟踪控制[J].自动化学报, 2021, 47(10):2386-2401
[112]GONG J, JIANG B, MA Y, et al.Distributed adaptive fault-tolerant formation control for heterogeneous mul-tiagent systems with communication link faults[J].IEEE Transactions on Aerospace and Electronic Sys-tems, 2022, 59(2):784-795
[113]LIU K X, DUAN P H, DUAN Z S, et al.Leader-following consensus of multi-agent systems with switching networks and event-triggered control[J].IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(5):1696-1706
[114]LIU K X, GU H B, WANG W, et al.Semiglobal con-sensus of a class of heterogeneous multi-agent systems with saturation[J].IEEE Transactions on Neural Net-works and Learning Systems, 2020, 31(11):4946-4955
[115]LIU K X, CHEN Y, DUAN Z S, et al.Cooperative out-put regulation of LTI plant via distributed observers with local measurement[J].IEEE Transactions on Cy-bernetics, 2018, 48(7):2181-2191
[116]Lü J H, YU X H, CHEN G R, et al.Characterizing the synchronizability of small-world dynamical net-works[J].IEEE Transactions on Circuits and Systems I-Regular Papers, 2004, 51(4):787-796
[117]吴娇.分布式SAR构型优化设计与基于事件驱动机制的构型控制[D]. 哈尔滨工业大学, 2018. WU J. Configuration optimization of distributed SAR and configuration control based on event triggering mecha-nism[D]. Harbin Institute of Technology, 2018 (in Chi-nese).
[118]李凯.通讯受限下分布式SAR的轨道协同和波束同步控制[D]. 哈尔滨工业大学, 2018. LI K. Re-search on orbit coordination and beam synchronization control of distributed SAR under communication con-straints[D]. Harbin Institute of Technology, 2018 (in Chinese).
[119]孟自强, 李亚超, 汪宗福, 等.弹载双基前视俯冲段弹道设计方法[J].系统工程与电子技术, 2015, 37(4):768-
[120]梅海文, 李亚超, 邢孟道, 等.机-弹双基前视俯冲段轨迹设计方法[J].系统工程与电子技术, 2019, 41(4):752-758
[121]郭媛, 索志勇, 王婷婷, 等.弹载双基前视构型参数优化设计方法[J].系统工程与电子技术, 2023, 45(11):3449-3454
[122]SUN Z, WU J, YANG J, et al.3-D path planning for GEO-UAV bistatic SAR using multiobjective evolu-tionary algorithms[C]//IEEE Radar Conference (Ra-darConf). IEEE, 2016: 1-5.
[123]SUN Z, WU J, YANG J, et al.Path planning for GEO-UAV bistatic SAR using constrained adaptive multi-objective differential evolution[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11):6444-6457
[124]SUN Z, REN H, SUN H, et al.Terminal trajectory planning for synthetic aperture radar imaging guidance based on Chrono-logical iterative search framework[J].IEEE Transactions on Cybernetics, 2024, 54(5):3065-3078
[125]姚书剑.基于GEO辐射源的机动平台双基SAR构型规划方法研究[D]. 电子科技大学, 2018. YAO S J. Research on configuration planning method of geosyn-chronous spaceborne-mobile platform bistatic SAR[D]. University of Electronic Science and technology, 2022, (in Chinese).
[126]ZHU F T, WU Y J.Research on radar seeker trajectory planning algorithm based on multi constraint optimiza-tion [C]//Proceedings of the 24th Academic Annual Conference of the Beijing Mechanics Society two thousand and eighteen, 2018.
[127]ZHU F T, WU Y J.Research on real time path planning algorithm based on optimal feedback control [C]//Proceedings of the 24th Academic Annual Confer-ence of the Beijing Mechanics Society two thousand and eighteen, 2018.
[128]李博皓, 吴云杰.弹载雷达成像制导路径规划的 模型研究[J].系统仿真学报, 2019, 31(12):2696-
[129]SINHA A, KUMAR S.R.,Supertwisting control-based cooperative salvo guidance using leader–follower ap-proach[J].IEEE Transactions on Aerospace and Elec-tronic Systems, 2020, 56(5):3556-3565
[130]KUMAR S R and MUKHERJEE D.Cooperative salvo guidance using finite-time consensus over directed cy-cles[J].IEEE Transactions on Aerospace and Electron-ic Systems, 2020, 56(2):1504-1514
[131]YU J L, SHI Z X, DONG X W, et al.Impact time con-sensus cooperative guidance against the maneuvering target: theory and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023:1-15.
[132]DONG W, WANG C, WANG J, et al.Fixed-time termi-nal angle constrained cooperative guidance law against maneuvering target[J].IEEE Transactions on Aero-space and Electronic Systems, 2022, 58(2):1352-1366
[133]ZHANG S, GUO Y, LIU Z, et al.Finite-time coopera-tive guidance strategy for impact angle and time con-trol[J].IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2):806-819
[134]ZHANG L, LI D, JING L, et al.Appointed-time coop-erative guidance law with line-of-sight angle constraint and time-to-go control[J].IEEE Transactions on Aero-space and Electronic Systems, 2023, 59(3):3142-3155
[135]LIANG L, DENG F, LU M, CHEN J.Analysis of role switch for cooperative target defense differential game[J].IEEE Transactions on Automatic Control, 2021, 66(2):902-909
[136]ZHANG M, LIANG C Y, MEI J S.Robust guidance law for cooperative aerial target circumnavigation of UAVs based on composite system theory[J]. Aerospace Science and Technology, 2023, 12: 108439.
[137]CHEN Y, WU S F, WANG X L, et al.Time and FOV constraint guidance applicable to maneuvering target via sliding mode control[J]. Aerospace Science and Technology, 2023, 133: 108104.
[138]MUKHERJEE D, KUMAR S R.Field-of-view con-strained impact time guidance against stationary tar-gets[J].IEEE Transactions on Aerospace and Electron-ic Systems, 2021, 57(5):3296-3306
[139]YANG X Y, ZHANG Y C, SONG S M.Two-stage co-operative guidance strategy with impact-angle and field-of-view constraints[J], 2022, 46(3): 590-599.
[140]WANG C Y, Dong W, Wang J N, et al.Impact-angle-constrained cooperative guidance for salvo attack[J].Journal of Guidance Control and Dynamics, 2021, 45(4):684-703
[141]LEE S, CHO N, KIM, Y.Impact-time-control guidance strategy with a composite structure considering the seeker’s field-of-view constraint[J].Journal of Guid-ance Control and Dynamics, 2020, 43(8):1566-1574
[142]DONG W, WANG C Y, WANG J N, et al.Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J].Journal of Guidance, Control, and Dynamics, 2021, 44(11):2001-2015
[143]LIU S X, YAN B B, Zhang T, et al.Coverage-based cooperative guidance law for intercepting hypersonic vehicles with overload constraint[J], Aerospace Sci-ence and Technology, 2022, 126: 107651.
[144]孙红燕, 周洁, 陈超波, 等.无人机集群协同免疫自学习围捕策略研究[J]. 战术导弹技术, 2023, 1: 132-142. SUN H Y, ZHOU J, CHEN C B, et al. Coop-erative hunting strategy of UAV swarm based on im-mune self-learning[J]. Tactical Missile Technology, 2023, 1:132-142 (in Chinese).