基于双/多基SAR的集群协同探测与制导新进展

  • 吕金虎 ,
  • 汪宗福 ,
  • 刘克新 ,
  • 于江龙 ,
  • 刘德元
展开
  • 北京航空航天大学

收稿日期: 2024-11-19

  修回日期: 2025-01-01

  网络出版日期: 2025-01-07

基金资助

国家自然科学基金;国家重点研发计划项目

New Progress in Cluster Collaborative Detection and Guidance Based on Bi/Multi-static SAR

  • GAO Feng Jin-Hu ,
  • WANG Zong-Fu ,
  • LIU Ke-Xin ,
  • YU Jiang-Long ,
  • LIU De-Yuan
Expand

Received date: 2024-11-19

  Revised date: 2025-01-01

  Online published: 2025-01-07

Supported by

National Natural Science Foundation of China;National Key R&D Program of China under Grant

摘要

在高动态、强对抗、资源受限等复杂环境下,集群作战系统协同探测与制导技术面临严峻挑战。基于双/多基合成孔径雷达(Synthetic Aperture Radar, SAR)的协同探测与制导技术,能够实现被动前视高分宽幅成像、多视角信息融合增强、以及多方向协同打击,是解决未来复杂环境下集群高可靠协同探测与制导难题、完成感知-认知-决策-执行(Observation, Orientation, Decision, Action, OODA)回路闭环的一种有效途径。近年来,随着双/多基SAR技术的进步,双/多基SAR在协同探测与制导领域的研究有了显著发展。本文旨在对双/多基SAR在集群协同探测与制导中的研究进展进行综述。具体来说,首先探讨基于双/多基SAR的协同探测与制导机理和典型工作模式,同时梳理复杂环境下基于双/多基SAR的协同探测与制导两个核心关键任务的技术需求;然后,介绍复杂环境下基于双/多基SAR的协同探测与制导涉及的各项关键技术及其进展,并对双/多基SAR架构下的协同探测与制导技术瓶颈与挑战展开分析;最后,围绕智能化、抗干扰等多方面挑战,展望基于双/多基SAR的集群协同探测与制导技术未来发展趋势。

本文引用格式

吕金虎 , 汪宗福 , 刘克新 , 于江龙 , 刘德元 . 基于双/多基SAR的集群协同探测与制导新进展[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31548

Abstract

In complex environments such as high dynamics, strong confrontation, and limited resources, the collaborative detection and guidance technologies of cluster combat systems face severe challenges. The collaborative detection and guidance technologies based on bi/multi-static synthetic aperture radar(SAR)can achieve passive forward looking high-resolution wide-range imag-ing, multi view information fusion enhancement, and multi-directional collaborative strike. It is an effective solution to the prob-lem of highly reliable collaborative detection and guidance of clusters in complex environments in the future, and completing the closed-loop of observation-orientation-decision-action (OODA) loop. In recent years, with the advancement of bi/multi-static SAR technology, there has been significant development in the research of bi/multi-static SAR in the field of collaborative de-tection and guidance. This paper aims to review the research progress of bi/multi-static SAR in cluster collaborative detection and guidance. Specifically, this paper firstly explores the collaborative detection and guidance mechanism and typical working modes based on bi/multi-static SAR, while also sorts out the technical requirements for the two core key tasks of collaborative detection and guidance based on bi/multi-static SAR in complex environments. Furthermore, the key technologies and their progress involved in collaborative detection and guidance based on bi/multi-static SAR in complex environments are introduced, and the bottlenecks and challenges of collaborative detection and guidance technology under the bi/multi-static SAR architec-ture are analyzed. Finally, focusing on the challenges such as intelligence and anti-interference, the future development trend of cluster collaborative detection and guidance technology based on bi/multi-static SAR are provided.

参考文献

[1]LIU D W, SUN J, HUANG D G, et al.Research on development status and technology trend of intelligent autonomous ammunition[C]//Journal of Physics: Con-ference Series, 2021, 1721(1): 012032. [2]MEI J Z, YE M A, CHANG T.Multi-agent unmanned swarm combat architecture based on OODA loop[J].Advances in Computer, Signals and Systems, 2021, 5(1):81-87 [3]唐杨, 祝小平, 周洲, 等.一种基于攻击时间和角度控制的协同制导方法[J].航空学报, 2022, 43(1):324844- [4]沈博, 武文亮, 杨刚, 等.基于群体的无人集群系统智能评价模型及方法[J].航空学报, 2023, 44(14):328003- [5]李国飞, 朱国梁, 吕金虎, 等.主-从多飞行器三维分布式协同制导方法[J].航空学报, 2021, 42(11):524926- [6]黎剑兵, 张双喜, 苏大亮, 等.一种多普勒域走动校正的斜视成像算法[J].宇航学报, 2016, 37(1):118-126 [7]汪俊澎, 李永祯, 邢世其, 等.合成孔径雷达电子干扰技术综述[J].信息对抗技术, 2023, 2(4-5):138-150 [8]Lü J H, CHEN G R.A new chaotic attractor coined[J].International Journal of Bifurcation and Chaos, 2002, 12(3):659-661 [9]YU W W, CHEN G R, Lü J H.On pinning synchroni-zation of complex dynamical networks[J].Automatica, 2009, 45(2):429-435 [10]ZHOU J, LU J A, Lü J H.Adaptive synchronization of an uncertain complex dynamical network[J].IEEE Transactions on Automatic Control, 2006, 51(4):652-656 [11]吴付杰, 王博文, 齐静雅.机载多孔径全景图像合成技术研究进展[J].航空学报, 2024, 45(24):530505- [12]CARDILLO G P.On the use of the gradient to deter-mine bistatic SAR resolution[C]// International Sympo-sium on Antennas and Propagation Society, Merging Technologies for the 90' s. IEEE, 1990: 1032-1035. [13]ENDER J H G, WALTERSCHEID I, BRENNER A R.New aspects of bistatic SAR: Processing and experi-ments[J]., 2004, 3: .[J].IEEE International Geoscience and Remote Sensing Symposium, 2004, 3:1758-1762 [14]KRIEGER G, MOREIRA A, FIEDLER H, et al.Tan-DEM-X: A satellite formation for high-resolution SAR interferometry[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3317-3341 [15]武俊杰, 孙稚超, 吕争.星源照射双多基地成像[J].雷达学报, 2023, 12(1):13-35 [16]WALTERSCHEID I, ENDER J H G, BRENNER A R, et al.Bistatic SAR processing and experiments[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2710-2717 [17]HUANG Y L, YANG J, WU J J, et al.Precise time fre-quency synchronization technology for bistatic radar[J].Journal of Systems Engineering and Electronics, 2008, 19(5):929-933 [18]WANG Y, LIU Y, LI Z, et al.High-resolution wide-swath imaging of spaceborne multichannel bistatic SAR with inclined geosynchronous illuminator[J].IEEE Geoscience and Remote Sensing Letters, 2017, 14(12):2380-2384 [19]BRENNER A R.Proof of concept for airborne SAR imaging with 5 cm resolution in X-band[C]//European Conference on Synthetic Aperture Radar. VDE, 2010: 1-4. [20]LIU J, LI P, TU C, et al.Spatiotemporal change detec-tion of coastal wetlands using multi-band SAR coher-ence and synergetic classification[J].Remote Sensing, 2022, 14(11):2610- [21]杨建宇.雷达对地成像技术多向演化趋势与规律分析[J].雷达学报, 2019, 8(6):669-692 [22]DENG H, LI Y, LIU M, et al.A space-variant phase filtering imaging algorithm for missile-borne BiSAR with arbitrary configuration and curved track[J].IEEE Sensors Journal, 2018, 18(8):3311-3326 [23]安道祥, 陈乐平, 冯东, 等.机载圆周成像技术研究[J].雷达学报, 2020, 9(2):221-242 [24]ZHANG Q, DONG Z, ZHANG Y, et al.GEO-UAV bistatic circular synthetic aperture radar: Concepts and technologies[C]//2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016: 4195-4198. [25]DUQUE S, LóPEZ-DEKKER P, MERLANO J C, et al.Bistatic SAR tomography: Processing and experi-mental results[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010: 154-157. [26]ZHANG S, GAO Y, XING M, et al.Ground moving target indication for the geosynchronous-low Earth or-bit bistatic multichannel SAR system[J]., 2021, 14: .[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:5072-5090 [27]AN H, WU J, HE Z, et al.Geosynchronous spaceborne-airborne multichannel bistatic SAR imaging using weighted fast factorized backprojection method[J].IEEE Geoscience and Remote Sensing Letters, 2019, 16(10):1590-1594 [28]李杭, 梁兴东, 张福博, 等.基于高斯混合聚类的阵列干涉三维成像[J].雷达学报, 2017, 6(6):630-639 [29]WANG R, DENG Y, ZHANG Z, et al.Double-channel bistatic SAR system with spaceborne illuminator for 2-D and 3-D SAR remote sensing[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4496-4507 [30]林玉川, 张剑云, 武拥军, 等.双基星载- 系统俯仰向处理技术[J].电子与信息学报, 2017, 39(10):2317-2324 [31]叶恺, 禹卫东, 王伟.一种双基星载 系统体制与处理方法[J].电子与信息学报, 2017, 39(11):2697-2704 [32]FOCSA A, ANGHEL A, DATCU M.A compressive-sensing approach for opportunistic bistatic SAR imag-ing enhancement by harnessing sparse multiaperture data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14. [33]AN H, WU J, TEH K C, et al.Simultaneous moving and stationary target imaging for geosynchronous spaceborne-airborne bistatic SAR based on sparse sepa-ration[J].IEEE Transactions on Geoscience and Re-mote Sensing, 2020, 59(8):6722-6735 [34]丁赤飚, 仇晓兰, 徐丰, 等.合成孔径雷达三维成像—从层析、阵列到微波视觉[J].雷达学报, 2019, 8(6):693-709 [35]CEN X, SONG X, LI Y, et al.A deep learning-based super-resolution model for bistatic SAR im-age[C]//International Conference on Electronics, Cir-cuits and Information Engineering (ECIE). IEEE, 2021: 228-233. [36]DAI H, DU L, WANG Y, et al.A modified CFAR algo-rithm based on object proposals for ship target detec-tion in SAR images[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1925-1929 [37]AN W, XIE C, YUAN X.An improved iterative censor-ing scheme for CFAR ship detection with SAR image-ry[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(8):4585-4595 [38]AGRAWAL A, MANGALRAJ P, BISHERWAL M A.Target detection in SAR images using SIFT[C]// IEEE International Symposium on Signal Processing and In-formation Technology (ISSPIT). IEEE, 2015: 90-94. [39]KAPLAN L M.Improved SAR target detection via extended fractal features[J].IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2):436-451 [40]AI J, YANG X, SONG J, et al.An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery[J].IEEE Journal of Oceanic Engineer-ing, 2017, 43(1):267-279 [41]LENG X, JI K, YANG K, et al.A bilateral CFAR algo-rithm for ship detection in SAR images[J].IEEE Geo-science and Remote Sensing Letters, 2015, 12(7):1536-1540 [42]LENG X, JI K, XING X, et al.Area ratio invariant feature group for ship detection in SAR imagery[J].IEEE Journal of Selected Topics in Applied Earth Ob-servations and Remote Sensing, 2018, 11(7):2376-2388 [43]LI Y, CHENG M, PENG X, et al.Ship detection and recognition combing one‐dimensional range profile with SAR image[J].The Journal of Engineering, 2019, 2019(19):6252-6254 [44]NI J, LUO Y, WANG D, et al.Saliency-based SAR target detection via convolutional sparse feature en-hancement and Bayesian inference[J]. IEEE Transac-tions on Geoscience and Remote Sensing, 2023, 61: 5202015. [45]KANG M, JI K, LENG X, et al.Contextual region-based convolutional neural network with multilayer fu-sion for SAR ship detection[J].Remote Sensing, 2017, 9(8):860- [46]PEI J, HUANG Y, HUO W, et al.SAR automatic target recognition based on multiview deep learning frame-work[J].IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(4):2196-2210 [47]杜兰, 王梓霖, 郭昱辰, 等.结合强化学习自适应候选框挑选的目标检测方法[J].雷达学报, 2022, 11(5):884-896 [48]ZHOU Z, GUAN R, CUI Z, et al.Scale expansion pyr-amid network for cross-scale object detection in SAR images[C]//IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021: 5291-5294. [49]ZHANG T, ZHANG X, KE X.Quad-FPN: A novel quad feature pyramid network for SAR ship detec-tion[J].Remote Sensing, 2021, 13(14):2771- [50]CUI Z, LI Q, CAO Z, et al.Dense attention pyramid networks for multi-scale ship detection in SAR imag-es[J].IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):8983-8997 [51]李毅, 杜兰, 杜宇昂.基于特征分解卷积神经网络的图像目标检测方法[J].雷达学报, 2023, 12(5):1069-1080 [52]TAO W, XI C, XIANG W R, et al.Study on SAR target recognition based on support vector ma-chine[C]//Asian-Pacific Conference on Synthetic Aper-ture Radar. IEEE, 2009: 856-859. [53]LIU K, WANG W, SUN Z.Recognition of SAR image based on combined templates[C]//IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2013: 284-287. [54]LIU H, LI S.Decision fusion of sparse representation and support vector machine for SAR image target recognition[J]. Neurocomputing, 2013, 113: 97-104. [55]SONG D, LIU L, ZHANG X, et al.A novel hog-based template matching method for SAR and optical im-age[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022: 951-954. [56]FU K, DOU F Z, LI H C, et al.Aircraft recognition in SAR images based on scattering structure feature and template matching[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11):4206-4217 [57]DING J, CHEN B, LIU H, et al.Convolutional neural network with data augmentation for SAR target recog-nition[J].IEEE Geoscience and remote sensing letters, 2016, 13(3):364-368 [58]CHEN S, WANG H.SAR target recognition based on deep learning[C]//International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2014: 541-547. [59]GAO F, HUANG T, WANG J, et al.Combining deep convolutional neural network and SVM to SAR image target recognition[C]//IEEE International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data. IEEE, 2017: 1082-1085. [60]ZHANG T, ZHANG X, KE X, et al.HOG-ShipCLSNet: A novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-22. [61]ZENG Z, SUN J, HAN Z, et al.SAR automatic target recognition method based on multi-stream complex-valued networks[J]. IEEE Transactions on geoscience and remote sensing, 2022, 60: 1-18. [62]ZHANG J, XING M, XIE Y.FEC: A feature fusion framework for SAR target recognition based on elec-tromagnetic scattering features and deep CNN fea-tures[J].IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3):2174-2187 [63]LI Y, DU L.Design of the physically interpretable SAR target recognition network combined with electromag-netic scattering characteristics[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022: 4988-4991. [64]CUI Z, TANG C, CAO Z, et al.SAR unlabeled target recognition based on updating CNN with assistant de-cision[J].IEEE Geoscience and Remote Sensing Let-ters, 2018, 15(10):1585-1589 [65]INKAWHICH N A, DAVIS E K, INKAWHICH M J, et al.Training SAR-ATR models for reliable operation in open-world environments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3954-3966. [66]FU K, ZHANG T, ZHANG Y, et al.Few-shot SAR target classification via metalearning[J]. IEEE Transac-tions on Geoscience and Remote Sensing, 2021, 60: 1-14. [67]HUANG P H, XIA X G, WANG L Y, et al.Imaging and relocation for extended ground moving targets in mul-tichannel SAR-GMTI systems. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-24. [68]YANG J, LIU C, WANG Y F.Imaging and parameter estimation of fast-moving targets with single-antenna SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11: 529-533. [69]HUANG P H, XIA X G, GAO Y S, et al.Ground mov-ing target re-focusing in SAR imagery based on RFRT-FrFT[J].IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):5476-5492 [70]LI R J, GAN D, XIE S Y, et al.Stability and perfor-mance analysis of the compressed Kalman filter algo-rithm for sparse stochastic systems[J].Science China Technological Sciences, 2023, 67(2):380-394 [71]LI Z Y, WU J J, HUANG Y L, et al.Ground-moving target imaging and velocity estimation based on mis-matched compression for bistatic forward-looking SAR[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3277-3291 [72]ZHANG S, ZHOU F, SUN G C, et al.A new SAR–GMTI high-accuracy focusing and relocation method using instantaneous interferometry[J].IEEE Transac-tions on Geoscience and Remote Sensing, 2016, 54(9):5564-5577 [73]WANG J, LENG X G, SUN Z Z, et al.Fast and accu-rate refocusing for moving ships in SAR imagery based on FrFT[J].Remote Sensing, 2023, 15(14):3656- [74]WANG J, LENG X G, SUN Z Z, et al.Refocusing swing ships in SAR imagery based on spatial-variant defocusing property[J].Remote Sensing, 2023, 15(12):3159- [75]KANG M S, KIM K T.Ground moving target imaging based on compressive sensing framework with single-channel SAR[J]. IEEE Sensors Journal, 2020, 20:1238-1250. [76]LI Z Y, WU J J, LI W C, et al.Dual-channel DPCA technique in bistatic forward-looking SAR for moving target detection and imaging[C]//Proceedings of 2011 IEEE CIE International Conference on Radar, Chengdu, 2011: 942-945. [77]LI Z Y, WU J J, HUANG Y L, et al.A ground moving target detection and imaging method in Doppler-rate domain for Bistatic forward-looking SAR[C]//2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 2014:2826-2829. [78]LI Z Y, WU J J, YI Q Y, et al.Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Sys-tems, 2015, 51:1000-1016. [79]LENG X G, JI K F, KUANG G Y.Ship detection from raw SAR echo data[J]. IEEE Transactions on Geosci-ence and Remote Sensing, 2023. 61:1-11. [80]LENG X G, JI K F, ZHOU S L et al.Discriminating ship from radio frequency interference based on noncircularity and non-gaussianity in sentinel-1 SAR imagery[J]. IEEE Transactions on Geoscience and Re-mote Sensing, 2019, 57:352-363. [81]JOSHI S K, BAUMGARTNER S V.Training data se-lection strategy for CFAR ship detection in range-compressed radar data[C]//2019 International Radar Conference (RADAR), Toulon, France, 2019:1-5. [82]ZHANG Q, WU J, LI C, et al.Study of the effects of non-square resolutions of bistatic SAR on template matching performance[C]//IEEE International Geosci-ence and Remote Sensing Symposium. IEEE, 2018: 557-560. [83]CURLANDER J C.Location of spaceborne SAR im-agery[J]. IEEE Transactions on Geoscience and Re-mote Sensing, 1982 (3): 359-364. [84]JIAO N, WANG F, YOU H, et al.Geo-positioning accu-racy improvement of multi-mode GF-3 satellite SAR imagery based on error sources analysis[J].Sensors, 2018, 18(7):2333- [85]ZHOU G, HE C, YUE T, et al.An improved method of AGM for high precision geolocation of SAR images[J].The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2018, 42(3):2479-2485 [86]吴元.一种基于参数更新的机载图像目标定位方法[J].电子与信息学报, 2019, 41(5):1063-1068 [87]丁赤飚, 刘佳音, 雷斌, 等.高分三号卫星系统级几何定位精度初探[J].雷达学报, 2017, 6(1):11-16 [88]EINEDER M, MINET C, STEIGENBERGER P, et al.Imaging geodesy—Toward centimeter-level ranging accuracy with TerraSAR-X[J].IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(2):661-671 [89]CONG X, BALSS U, EINEDER M, et al.Imaging geodesy—Centimeter-level ranging accuracy with Ter-raSAR-X: An update[J].IEEE Geoscience and Remote Sensing Letters, 2012, 9(5):948-952 [90]LI J, YANG Q, LI Z, et al.A blind localization method based on monostatic equivalent for bistatic SAR[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022: 1836-1839. [91]LI J, YANG Q, LI Z, et al.A blind localization method with multi-point scatterer targets for BiSAR[C]//2021 CIE International Conference on Radar (Radar). IEEE, 2021: 759-762. [92]FU X, CHEN M.Missile location based on missile-borne bistatic SAR[C]//International Symposium on Computational Intelligence and Design. IEEE, 2014, 2: 232-235. [93]梅海文, 孟自强, 李亚超.双基前视几何定位及同步误差分析[J].电子与信息学报, 2018, 40(4):882-889 [94]LI X R, JILKOV V P.Survey of maneuvering target trackingPart V. Multiple-model methods[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4):1255-1321 [95]SU Y, HE Z, DENG M, et al.Collaborative Resource Allocation and Beampattern Optimization for Maneu-vering Targets Tracking with Distributed Radar Net-work[C]//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022: 7669-7672. [96]OLFATI-SABER R, JALALKAMALI P.Collaborative target tracking using distributed Kalman filtering on mobile sensor networks[C]//American Control Confer-ence. IEEE, 2011: 1100-1105. [97]SUGANYA S.A cluster-based approach for collabora-tive target tracking in wireless sensor net-works[C]//International Conference on Emerging Trends in Engineering and Technology. IEEE, 2008: 276-281. [98]YANG Q, LI Z Y, LI J A, et al.A novel bistatic SAR maritime ship target imaging algorithm based on cubic phase time-scaled transformation[J].Remote Sensing, 2023, 15(5):1330- [99]WU J, YANG J, YANG H, et al.Optimal geometry configuration of bistatic forward-looking SAR[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009: 1117-1120. [100]AN H, WU J, SUN Z, et al.Flight parameter design for translational invariant bistatic forward-looking SAR based on multiobjective particle swarm optimiza-tion[C]//CIE International Conference on Radar (RADAR). IEEE, 2016: 1-5. [101]LU Z, WANG Y, XU M, et al.Spacecraft formation design for bistatic SAR with GEO illuminator and LEO receiver[C]//IEEE International Geoscience and Re-mote Sensing Symposium. IEEE, 2018: 4451-4454. [102]LI N, HOU Y, XING L, et al.An optimization method for distributed InSAR satellite formation configura-tion[C]//China International SAR Symposium (CISS). IEEE, 2022: 1-4. [103]SCHARF D P, HADAEGH F Y, PLOEN S R.A survey of spacecraft formation flying guidance and control. part ii: control[C]//Proceedings of the 2004 American control conference. IEEE, 2004, 4: 2976-2985. [104]Lü J H, CHEN G R.A time-varying complex dynam-ical network model and its controlled synchronization criteria[J].IEEE Transactions on Automatic Control, 2005, 50(6):841-846 [105]ZHOU J, LU J A, Lü J H.Pinning adaptive synchroni-zation of a general complex dynamical[J].Automatica, 2008, 44(4):996-1003 [106]HU Q, SHI Y, WANG C.Event-based formation coor-dinated control for multiple spacecraft under commu-nication constraints[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(5):3168-3179 [107]LIPPAY Z S, HOAGG J B.Formation control with time-varying formations,bounded controls,and local collision avoidance[J].IEEE Transactions on Control Systems Technology, 2021, 30(1):261-276 [108]SUI Z, PU Z, YI J, et al.Formation control with colli-sion avoidance through deep reinforcement learning using model-guided demonstration[J].IEEE Transac-tions on Neural Networks and Learning Systems, 2020, 32(6):2358-2372 [109]LIU H, MENG Q, PENG F, et al.Heterogeneous for-mation control of multiple UAVs with limited-input leader via reinforcement learning[J]. Neurocomputing, 2020, 412: 63-71. [110]ZHOU Y, LU F, PU G, et al.Adaptive leader-follower formation control and obstacle avoidance via deep re-inforcement learning[C]//IEEE/RSJ International Con-ference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4273-4280. [111]田磊, 董希旺, 赵启伦, 等.异构集群系统分布式自适应输出时变编队跟踪控制[J].自动化学报, 2021, 47(10):2386-2401 [112]GONG J, JIANG B, MA Y, et al.Distributed adaptive fault-tolerant formation control for heterogeneous mul-tiagent systems with communication link faults[J].IEEE Transactions on Aerospace and Electronic Sys-tems, 2022, 59(2):784-795 [113]LIU K X, DUAN P H, DUAN Z S, et al.Leader-following consensus of multi-agent systems with switching networks and event-triggered control[J].IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(5):1696-1706 [114]LIU K X, GU H B, WANG W, et al.Semiglobal con-sensus of a class of heterogeneous multi-agent systems with saturation[J].IEEE Transactions on Neural Net-works and Learning Systems, 2020, 31(11):4946-4955 [115]LIU K X, CHEN Y, DUAN Z S, et al.Cooperative out-put regulation of LTI plant via distributed observers with local measurement[J].IEEE Transactions on Cy-bernetics, 2018, 48(7):2181-2191 [116]Lü J H, YU X H, CHEN G R, et al.Characterizing the synchronizability of small-world dynamical net-works[J].IEEE Transactions on Circuits and Systems I-Regular Papers, 2004, 51(4):787-796 [117]吴娇.分布式SAR构型优化设计与基于事件驱动机制的构型控制[D]. 哈尔滨工业大学, 2018. WU J. Configuration optimization of distributed SAR and configuration control based on event triggering mecha-nism[D]. Harbin Institute of Technology, 2018 (in Chi-nese). [118]李凯.通讯受限下分布式SAR的轨道协同和波束同步控制[D]. 哈尔滨工业大学, 2018. LI K. Re-search on orbit coordination and beam synchronization control of distributed SAR under communication con-straints[D]. Harbin Institute of Technology, 2018 (in Chinese). [119]孟自强, 李亚超, 汪宗福, 等.弹载双基前视俯冲段弹道设计方法[J].系统工程与电子技术, 2015, 37(4):768- [120]梅海文, 李亚超, 邢孟道, 等.机-弹双基前视俯冲段轨迹设计方法[J].系统工程与电子技术, 2019, 41(4):752-758 [121]郭媛, 索志勇, 王婷婷, 等.弹载双基前视构型参数优化设计方法[J].系统工程与电子技术, 2023, 45(11):3449-3454 [122]SUN Z, WU J, YANG J, et al.3-D path planning for GEO-UAV bistatic SAR using multiobjective evolu-tionary algorithms[C]//IEEE Radar Conference (Ra-darConf). IEEE, 2016: 1-5. [123]SUN Z, WU J, YANG J, et al.Path planning for GEO-UAV bistatic SAR using constrained adaptive multi-objective differential evolution[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11):6444-6457 [124]SUN Z, REN H, SUN H, et al.Terminal trajectory planning for synthetic aperture radar imaging guidance based on Chrono-logical iterative search framework[J].IEEE Transactions on Cybernetics, 2024, 54(5):3065-3078 [125]姚书剑.基于GEO辐射源的机动平台双基SAR构型规划方法研究[D]. 电子科技大学, 2018. YAO S J. Research on configuration planning method of geosyn-chronous spaceborne-mobile platform bistatic SAR[D]. University of Electronic Science and technology, 2022, (in Chinese). [126]ZHU F T, WU Y J.Research on radar seeker trajectory planning algorithm based on multi constraint optimiza-tion [C]//Proceedings of the 24th Academic Annual Conference of the Beijing Mechanics Society two thousand and eighteen, 2018. [127]ZHU F T, WU Y J.Research on real time path planning algorithm based on optimal feedback control [C]//Proceedings of the 24th Academic Annual Confer-ence of the Beijing Mechanics Society two thousand and eighteen, 2018. [128]李博皓, 吴云杰.弹载雷达成像制导路径规划的 模型研究[J].系统仿真学报, 2019, 31(12):2696- [129]SINHA A, KUMAR S.R.,Supertwisting control-based cooperative salvo guidance using leader–follower ap-proach[J].IEEE Transactions on Aerospace and Elec-tronic Systems, 2020, 56(5):3556-3565 [130]KUMAR S R and MUKHERJEE D.Cooperative salvo guidance using finite-time consensus over directed cy-cles[J].IEEE Transactions on Aerospace and Electron-ic Systems, 2020, 56(2):1504-1514 [131]YU J L, SHI Z X, DONG X W, et al.Impact time con-sensus cooperative guidance against the maneuvering target: theory and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023:1-15. [132]DONG W, WANG C, WANG J, et al.Fixed-time termi-nal angle constrained cooperative guidance law against maneuvering target[J].IEEE Transactions on Aero-space and Electronic Systems, 2022, 58(2):1352-1366 [133]ZHANG S, GUO Y, LIU Z, et al.Finite-time coopera-tive guidance strategy for impact angle and time con-trol[J].IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2):806-819 [134]ZHANG L, LI D, JING L, et al.Appointed-time coop-erative guidance law with line-of-sight angle constraint and time-to-go control[J].IEEE Transactions on Aero-space and Electronic Systems, 2023, 59(3):3142-3155 [135]LIANG L, DENG F, LU M, CHEN J.Analysis of role switch for cooperative target defense differential game[J].IEEE Transactions on Automatic Control, 2021, 66(2):902-909 [136]ZHANG M, LIANG C Y, MEI J S.Robust guidance law for cooperative aerial target circumnavigation of UAVs based on composite system theory[J]. Aerospace Science and Technology, 2023, 12: 108439. [137]CHEN Y, WU S F, WANG X L, et al.Time and FOV constraint guidance applicable to maneuvering target via sliding mode control[J]. Aerospace Science and Technology, 2023, 133: 108104. [138]MUKHERJEE D, KUMAR S R.Field-of-view con-strained impact time guidance against stationary tar-gets[J].IEEE Transactions on Aerospace and Electron-ic Systems, 2021, 57(5):3296-3306 [139]YANG X Y, ZHANG Y C, SONG S M.Two-stage co-operative guidance strategy with impact-angle and field-of-view constraints[J], 2022, 46(3): 590-599. [140]WANG C Y, Dong W, Wang J N, et al.Impact-angle-constrained cooperative guidance for salvo attack[J].Journal of Guidance Control and Dynamics, 2021, 45(4):684-703 [141]LEE S, CHO N, KIM, Y.Impact-time-control guidance strategy with a composite structure considering the seeker’s field-of-view constraint[J].Journal of Guid-ance Control and Dynamics, 2020, 43(8):1566-1574 [142]DONG W, WANG C Y, WANG J N, et al.Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J].Journal of Guidance, Control, and Dynamics, 2021, 44(11):2001-2015 [143]LIU S X, YAN B B, Zhang T, et al.Coverage-based cooperative guidance law for intercepting hypersonic vehicles with overload constraint[J], Aerospace Sci-ence and Technology, 2022, 126: 107651. [144]孙红燕, 周洁, 陈超波, 等.无人机集群协同免疫自学习围捕策略研究[J]. 战术导弹技术, 2023, 1: 132-142. SUN H Y, ZHOU J, CHEN C B, et al. Coop-erative hunting strategy of UAV swarm based on im-mune self-learning[J]. Tactical Missile Technology, 2023, 1:132-142 (in Chinese).
文章导航

/