收稿日期:
2024-11-19
修回日期:
2024-12-09
接受日期:
2024-12-31
出版日期:
2025-01-07
发布日期:
2025-01-07
通讯作者:
吕金虎
E-mail:jhlu@iss.ac.cn
基金资助:
Jinhu LÜ(), Zongfu WANG, Kexin LIU, Jianglong YU, Deyuan LIU
Received:
2024-11-19
Revised:
2024-12-09
Accepted:
2024-12-31
Online:
2025-01-07
Published:
2025-01-07
Contact:
Jinhu Lü
E-mail:jhlu@iss.ac.cn
Supported by:
摘要:
在高动态、强对抗、资源受限等复杂环境下,集群作战系统协同探测与制导技术面临严峻挑战。基于双/多基合成孔径雷达(SAR)的协同探测与制导技术,能够实现被动前视高分宽幅成像、多视角信息融合增强以及多方向协同打击,是解决未来复杂环境下集群高可靠协同探测与制导难题、完成感知-认知-决策-执行(OODA)回路闭环的一种有效途径。近年来,随着双/多基SAR技术的进步,双/多基SAR在协同探测与制导领域的研究有了显著发展。旨在对双/多基SAR在集群协同探测与制导中的研究进展进行综述。具体来说,首先探讨基于双/多基SAR的协同探测与制导机理和典型工作模式,同时梳理复杂环境下基于双/多基SAR的协同探测与制导2个核心关键任务的技术需求;然后,介绍复杂环境下基于双/多基SAR的协同探测与制导涉及的各项关键技术及其进展,并对双/多基SAR架构下的协同探测与制导技术瓶颈与挑战展开分析;最后,围绕智能化、抗干扰等多方面挑战,展望基于双/多基SAR的集群协同探测与制导技术未来发展趋势。
中图分类号:
吕金虎, 汪宗福, 刘克新, 于江龙, 刘德元. 基于双/多基SAR的集群协同探测与制导新进展[J]. 航空学报, 2025, 46(6): 531548.
Jinhu LÜ, Zongfu WANG, Kexin LIU, Jianglong YU, Deyuan LIU. New progress in cluster collaborative detection and guidance based on bi/multi-static SAR[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531548.
表 1
海上慢动大和陆地机动小目标双/多基SAR协同探测方案对比
对比项 | 海上慢动大目标 | 陆地机动小目标 |
---|---|---|
目标特性 | 相对背景反射特性强,低速平动和三维晃动 | 相对背景散射特性弱,目标二维机动 |
背景杂波特性 | 海杂波动态变化,相对目标较弱 | 地面杂波较为固定,杂波能量强 |
适应成像平台 | 导弹等高机动平台 | 无人机、巡飞弹等平台 |
平台运动轨迹 | 三维俯冲、移变构型 | 匀直平飞、非移变构型 |
成像通道 | 单通道 | 多通道 |
目标检测方法 | 基于CFAR的恒虚警简检测 | 基于多通道杂波抑制的检测 |
成像分辨率 | 5 m×5 m~10 m×10 m | 1 m×1 m~3 m×3 m |
参数估计方法 | 单通道类方法,如时频分析 | 多通道类方法,如ATI干涉测速 |
制导定位精度 | 优于10 m | 优于3 m |
定位对位姿测量精度 | 较高,可直接利用平台位姿测量设备 | 高,需要专用的高精度位姿测量设备 |
目标识别难度 | 较难 | 难 |
成像帧率 | 1~5 Hz | 低于1 Hz |
1 | LIU D W, SUN J, HUANG D G, et al. Research on development status and technology trend of intelligent autonomous ammunition[J]. Journal of Physics: Conference Series, 2021, 1721(1): 012032. |
2 | MEI J Z, YE M A, CHANG T. Multi-agent unmanned swarm combat architecture based on OODA loop[J]. Advances in Computer, Signals and Systems, 2021, 5(1): 81-87. |
3 | 唐杨, 祝小平, 周洲, 等. 一种基于攻击时间和角度控制的协同制导方法[J]. 航空学报, 2022, 43(1): 324844. |
TANG Y, ZHU X P, ZHOU Z, et al. Cooperative guidance method based on impact time and angle control[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 324844 (in Chinese). | |
4 | 沈博, 武文亮, 杨刚, 等. 基于群体OODA的无人集群系统智能评价模型及方法[J]. 航空学报, 2023, 44(14): 328003. |
SHEN B, WU W L, YANG G, et al. Evaluation models and methods for intelligence of unmanned swarm systems based on collective OODA loop[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 328003 (in Chinese). | |
5 | 李国飞, 朱国梁, 吕金虎, 等. 主-从多飞行器三维分布式协同制导方法[J]. 航空学报, 2021, 42(11): 524926. |
LI G F, ZHU G L, LYU J H, et al. Three-dimensional distributed cooperative guidance law for multiple leader-follower flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524926 (in Chinese). | |
6 | 黎剑兵, 张双喜, 苏大亮, 等. 一种多普勒域走动校正的斜视SAR成像算法[J]. 宇航学报, 2016, 37(1): 118-126. |
LI J B, ZHANG S X, SU D L, et al. A squint SAR imaging algorithm for linear range cell migration correction in Doppler domain[J]. Journal of Astronautics, 2016, 37(1): 118-126 (in Chinese). | |
7 | 汪俊澎, 李永祯, 邢世其, 等. 合成孔径雷达电子干扰技术综述[J]. 信息对抗技术, 2023(S1): 138-150. |
WANG J P, LI Y Z, XING S Q, et al. A review of electronic jamming technology for synthetic aperture radar[J]. Information Countermeasure Technology, 2023(S1): 138-150 (in Chinese). | |
8 | LÜ J, CHEN G R. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3): 659-661. |
9 | YU W W, CHEN G R, LÜ J H. On pinning synchronization of complex dynamical networks[J]. Automatica, 2009, 45(2): 429-435. |
10 | ZHOU J, LU J N, LU J H. Adaptive synchronization of an uncertain complex dynamical network[J]. IEEE Transactions on Automatic Control, 2006, 51(4): 652-656. |
11 | 吴付杰, 王博文, 齐静雅, 等. 机载多孔径全景图像合成技术研究进展[J]. 航空学报, 2025: 46(3): 530505. |
WU F J, WANG B W, QI J Y, et al. Research progress of airborne multi-aperture panoramic image synthesis technology[J]. Acta Aeronautica et Astronautica Sinica, 2025: 46(3): 530505 (in Chinese). | |
12 | CARDILLO G P. On the use of the gradient to determine bistatic SAR resolution[C]∥International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’s. Piscataway: IEEE Press, 2002: 1032-1035. |
13 | ENDER J H G, WALTERSCHEID I, BRENNER A R. New aspects of bistatic SAR: Processing and experiments[C]∥IGARSS 2004.2004 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2004: 1758-1762. |
14 | KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317-3341. |
15 | 武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13-35. |
WU J J, SUN Z C, LV Z, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13-35 (in Chinese). | |
16 | WALTERSCHEID I, ENDER J H G, BRENNER A R, et al. Bistatic SAR processing and experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2710-2717. |
17 | HUANG Y L, YANG J Y, WU J J, et al. Precise time frequency synchronization technology for bistatic radar[J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 929-933. |
18 | WANG Y K, LIU Y Y, LI Z F, et al. High-resolution wide-swath imaging of spaceborne multichannel bistatic SAR with inclined geosynchronous illuminator[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2380-2384. |
19 | BRENNER A R. Proof of concept for airborne SAR imaging with 5 cm resolution in X-band[C]∥8th European Conference on Synthetic Aperture Radar, 2010: 1-4. |
20 | LIU J, LI P, TU C R, et al. Spatiotemporal change detection of coastal wetlands using multi-band SAR coherence and synergetic classification[J]. Remote Sensing, 2022, 14(11): 2610. |
21 | 杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669-692. |
YANG J Y. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669-692 (in Chinese). | |
22 | DENG H, LI Y C, LIU M Q, et al. A space-variant phase filtering imaging algorithm for missile-borne BiSAR with arbitrary configuration and curved track[J]. IEEE Sensors Journal, 2018, 18(8): 3311-3326. |
23 | 安道祥, 陈乐平, 冯东, 等. 机载圆周SAR成像技术研究[J]. 雷达学报, 2020, 9(2): 221-242. |
AN D X, CHEN L P, FENG D, et al. Study of the airborne circular synthetic aperture radar imaging technology[J]. Journal of Radars, 2020, 9(2): 221-242 (in Chinese). | |
24 | ZHANG Q L, DONG Z, ZHANG Y S, et al. GEO-UAV bistatic circular synthetic aperture radar: Concepts and technologies[C]∥2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway: IEEE Press, 2016: 4195-4198. |
25 | DUQUE S, LÓPEZ-DEKKER P, MERLANO J C, et al. Bistatic SAR tomography: Processing and experimental results[C]∥2010 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2010: 154-157. |
26 | ZHANG S X, GAO Y X, XING M D, et al. Ground moving target indication for the geosynchronous-low earth orbit bistatic multichannel SAR system[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5072-5090. |
27 | AN H Y, WU J J, HE Z W, et al. Geosynchronous spaceborne-airborne multichannel bistatic SAR imaging using weighted fast factorized backprojection method[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1590-1594. |
28 | 李杭, 梁兴东, 张福博, 等. 基于高斯混合聚类的阵列干涉SAR三维成像[J]. 雷达学报, 2017, 6(6): 630-639. |
LI H, LIANG X D, ZHANG F B, et al. 3D imaging for array InSAR based on Gaussian mixture model clustering[J]. Journal of Radars, 2017, 6(6): 630-639 (in Chinese). | |
29 | WANG R, DENG Y K, ZHANG Z M, et al. Double-channel bistatic SAR system with spaceborne illuminator for 2-D and 3-D SAR remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4496-4507. |
30 | 林玉川, 张剑云, 武拥军, 等. 双基星载HRWS-SAR系统俯仰向DBF处理技术[J]. 电子与信息学报, 2017, 39(10): 2317-2324. |
LIN Y C, ZHANG J Y, WU Y J, et al. Digital beam-forming scheme on elevation for bistatic spaceborne high resolution wide swath SAR[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2317-2324 (in Chinese). | |
31 | 叶恺, 禹卫东, 王伟. 一种双基星载MIMO SAR系统体制与处理方法[J]. 电子与信息学报, 2017, 39(11): 2697-2704. |
YE K, YU W D, WANG W. Investigation on system scheme and processing approach for bistatic spaceborne MIMO SAR[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2697-2704 (in Chinese). | |
32 | FOCSA A, ANGHEL A, DATCU M. A compressive-sensing approach for opportunistic bistatic SAR imaging enhancement by harnessing sparse multiaperture data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5205914. |
33 | AN H Y, WU J J, TEH K C, et al. Simultaneous moving and stationary target imaging for geosynchronous spaceborne-airborne bistatic SAR based on sparse separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6722-6735. |
34 | 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像: 从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693-709. |
DING C B, QIU X L, XU F, et al. Synthetic aperture radar three-dimensional imaging: From TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693-709 (in Chinese). | |
35 | CEN X, SONG X, LI Y C, et al. A deep learning-based super-resolution model for bistatic SAR image[C]∥2021 International Conference on Electronics, Circuits and Information Engineering (ECIE). Piscataway: IEEE Press, 2021: 228-233. |
36 | DAI H, DU L, WANG Y, et al. A modified CFAR algorithm based on object proposals for ship target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1925-1929. |
37 | AN W T, XIE C H, YUAN X Z. An improved iterative censoring scheme for CFAR ship detection with SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4585-4595. |
38 | AGRAWAL A, MANGALRAJ P, BISHERWAL M A. Target detection in SAR images using SIFT[C]∥2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). Piscataway: IEEE Press, 2015: 90-94. |
39 | KAPLAN L M. Improved SAR target detection via extended fractal features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 436-451. |
40 | AI J Q, YANG X Z, SONG J T, et al. An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 267-279. |
41 | LENG X G, JI K F, YANG K, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536-1540. |
42 | LENG X G, JI K F, XING X W, et al. Area ratio invariant feature group for ship detection in SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2376-2388. |
43 | LI Y, CHENG M M, PENG X J, et al. Ship detection and recognition combing one-dimensional range profile with SAR image[J]. The Journal of Engineering, 2019, 2019(19): 6252-6254. |
44 | NI J C, LUO Y, WANG D, et al. Saliency-based SAR target detection via convolutional sparse feature enhancement and Bayesian inference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202015. |
45 | KANG M, JI K F, LENG X G, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9(8): 860. |
46 | PEI J F, HUANG Y L, HUO W B, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196-2210. |
47 | 杜兰, 王梓霖, 郭昱辰, 等. 结合强化学习自适应候选框挑选的SAR目标检测方法[J]. 雷达学报, 2022, 11(5): 884-896. |
DU L, WANG Z L, GUO Y C, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884-896 (in Chinese). | |
48 | ZHOU Z, GUAN R, CUI Z Y, et al. Scale expansion pyramid network for cross-scale object detection in SAR images[C]∥2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021: 5291-5294. |
49 | ZHANG T W, ZHANG X L, KE X. Quad-FPN: A novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771. |
50 | CUI Z Y, LI Q, CAO Z J, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983-8997. |
51 | 李毅, 杜兰, 杜宇昂. 基于特征分解卷积神经网络的SAR图像目标检测方法[J]. 雷达学报, 2023, 12(5): 1069-1080. |
LI Y, DU L, DU Y A. Convolutional neural network based on feature decomposition for target detection in SAR images[J]. Journal of Radars, 2023, 12(5): 1069-1080 (in Chinese). | |
52 | TAO W, XI C, RUANG X W, et al. Study on SAR target recognition based on support vector machine[C]∥2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar. Piscataway: IEEE Press, 2009: 856-859. |
53 | LIU K Q, WANG W G, SUN Z W. Recognition of SAR image based on combined templates[C]∥2013 IEEE International Conference on Imaging Systems and Techniques (IST). Piscataway: IEEE Press, 2013: 284-287. |
54 | LIU H C, LI S T. Decision fusion of sparse representation and support vector machine for SAR image target recognition[J]. Neurocomputing, 2013, 113: 97-104. |
55 | SONG D Y, LIU L, ZHANG X Y, et al. A novel hog-based template matching method for SAR and optical image[C]∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 951-954. |
56 | FU K, DOU F Z, LI H C, et al. Aircraft recognition in SAR images based on scattering structure feature and template matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4206-4217. |
57 | DING J, CHEN B, LIU H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364-368. |
58 | CHEN S Z, WANG H P. SAR target recognition based on deep learning[C]∥2014 International Conference on Data Science and Advanced Analytics (DSAA). Piscataway: IEEE Press, 2014: 541-547. |
59 | GAO F, HUANG T, WANG J, et al. Combining deep convolutional neural network and SVM to SAR image target recognition[C]∥2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). Piscataway: IEEE Press, 2017: 1082-1085. |
60 | ZHANG T W, ZHANG X L, KE X, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5210322. |
61 | ZENG Z Q, SUN J P, HAN Z, et al. SAR automatic target recognition method based on multi-stream complex-valued networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5228618. |
62 | ZHANG J S, XING M D, XIE Y Y. FEC: A feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2174-2187. |
63 | LI Y, DU L. Design of the physically interpretable SAR target recognition network combined with electromagnetic scattering characteristics[C]∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 4988-4991. |
64 | CUI Z Y, TANG C, CAO Z J, et al. SAR unlabeled target recognition based on updating CNN with assistant decision[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1585-1589. |
65 | INKAWHICH N A, DAVIS E K, INKAWHICH M J, et al. Training SAR-ATR models for reliable operation in open-world environments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3954-3966. |
66 | FU K, ZHANG T F, ZHANG Y, et al. Few-shot SAR target classification via metalearning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 2000314. |
67 | HUANG P H, XIA X G, WANG L Y, et al. Imaging and relocation for extended ground moving targets in multichannel SAR-GMTI systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5214024. |
68 | YANG J, LIU C, WANG Y F. Imaging and parameter estimation of fast-moving targets with single-antenna SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 529-533. |
69 | HUANG P H, XIA X G, GAO Y S, et al. Ground moving target refocusing in SAR imagery based on RFRT-FrFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5476-5492. |
70 | LI R J, GAN D, XIE S Y, et al. Stability and performance analysis of the compressed Kalman filter algorithm for sparse stochastic systems[J]. Science China Technological Sciences, 2024, 67(2): 380-394. |
71 | LI Z Y, WU J J, HUANG Y L, et al. Ground-moving target imaging and velocity estimation based on mismatched compression for bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3277-3291. |
72 | ZHANG S, ZHOU F, SUN G C, et al. A new SAR-GMTI high-accuracy focusing and relocation method using instantaneous interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5564-5577. |
73 | WANG J, LENG X G, SUN Z Z, et al. Fast and accurate refocusing for moving ships in SAR imagery based on FrFT[J]. Remote Sensing, 2023, 15(14): 3656. |
74 | WANG J, LENG X G, SUN Z Z, et al. Refocusing swing ships in SAR imagery based on spatial-variant defocusing property[J]. Remote Sensing, 2023, 15(12): 3159. |
75 | KANG M S, KIM K T. Ground moving target imaging based on compressive sensing framework with single-channel SAR[J]. IEEE Sensors Journal, 2020, 20(3): 1238-1250. |
76 | LI Z Y, WU J J, LI W C, et al. Dual-channel DPCA technique in bistatic forward-looking SAR for moving target detection and imaging[C]∥Proceedings of 2011 IEEE CIE International Conference on Radar. Piscataway: IEEE Press, 2011: 942-945. |
77 | LI Z Y, WU J J, HUANG Y L, et al. A ground moving target detection and imaging method in Doppler-rate domain for Bistatic forward-looking SAR[C]∥2014 IEEE Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2014: 2826-2829. |
78 | LI Z Y, WU J J, YI Q Y, et al. Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1000-1016. |
79 | LI P C, DING Z G, ZHANG T Y, et al. Integrated detection and imaging algorithm for radar sparse targets via CFAR-ADMM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204015. |
80 | LENG X G, JI K F, KUANG G Y. Ship detection from raw SAR echo data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5207811. |
81 | LENG X G, JI K F, ZHOU S L, et al. Discriminating ship from radio frequency interference based on noncircularity and non-gaussianity in sentinel-1 SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 352-363. |
82 | JOSHI S K, BAUMGARTNER S V. Training data selection strategy for CFAR ship detection in range-compressed radar data[C]∥2019 International Radar Conference (RADAR). Piscataway: IEEE Press, 2019: 1-5. |
83 | ZHANG Q H, WU J J, LI C Y, et al. Study of the effects of non-square resolutions of bistatic SAR on template matching performance[C]∥IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2018: 557-560. |
84 | CURLANDER J C. Location of spaceborne SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(3): 359-364. |
85 | JIAO N G, WANG F, YOU H J, et al. Geo-positioning accuracy improvement of multi-mode GF-3 satellite SAR imagery based on error sources analysis[J]. Sensors, 2018, 18(7): 2333. |
86 | ZHOU G, HE C, YUE T, et al. An improved method of AGM for high precision geolocation of SAR images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-3: 2479-2485. |
87 | 吴元. 一种基于参数更新的机载SAR图像目标定位方法[J]. 电子与信息学报, 2019, 41(5): 1063-1068. |
WU Y. An airborne SAR image target location algorithm based on parameter refining[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1063-1068 (in Chinese). | |
88 | 丁赤飚, 刘佳音, 雷斌, 等. 高分三号SAR卫星系统级几何定位精度初探[J]. 雷达学报, 2017, 6(1): 11-16. |
DING C B, LIU J Y, LEI B, et al. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system[J]. Journal of Radars, 2017, 6(1): 11-16 (in Chinese). | |
89 | EINEDER M, MINET C, STEIGENBERGER P, et al. Imaging geodesy: Toward centimeter-level ranging accuracy with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 661-671. |
90 | CONG X Y, BALSS U, EINEDER M, et al. Imaging geodesy: Centimeter-level ranging accuracy with TerraSAR-X: An update[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 948-952. |
91 | LI J N, YANG Q, LI Z Y, et al. A blind localization method based on monostatic equivalent for bistatic SAR[C]∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 1836-1839. |
92 | LI J N, YANG Q, LI Z Y, et al. A blind localization method with multi-point scatterer targets for BiSAR[C]∥2021 CIE International Conference on Radar (Radar). Piscataway: IEEE Press, 2021: 759-762. |
93 | FU X Q, CHEN M R. Missile location based on missile-borne bistatic SAR[C]∥2014 Seventh International Symposium on Computational Intelligence and Design. Piscataway: IEEE Press, 2014: 232-235. |
94 | 梅海文, 孟自强, 李亚超, 等. 双基前视SAR几何定位及同步误差分析[J]. 电子与信息学报, 2018, 40(4): 882-889. |
MEI H W, MENG Z Q, LI Y C, et al. Bistatic forward-looking SAR geometrical positioning and analysis of synchronization error[J]. Journal of Electronics & Information Technology, 2018, 40(4): 882-889 (in Chinese). | |
95 | LI X R, JILKOV V P. Survey of maneuvering target tracking. Part Ⅰ. Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364. |
96 | SU Y, HE Z S, DENG M L, et al. Collaborative resource allocation and beampattern optimization for maneuvering targets tracking with distributed radar network[C]∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 7669-7672. |
97 | OLFATI-SABER R, JALALKAMALI P. Collaborative target tracking using distributed Kalman filtering on mobile sensor networks[C]∥Proceedings of the 2011 American Control Conference. Piscataway: IEEE Press, 2011: 1100-1105. |
98 | SUGANYA S. A cluster-based approach for collaborative target tracking in wireless sensor networks[C]∥2008 First International Conference on Emerging Trends in Engineering and Technology. Piscataway: IEEE Press, 2008: 276-281. |
99 | YANG Q, LI Z Y, LI J N, et al. A novel bistatic SAR maritime ship target imaging algorithm based on cubic phase time-scaled transformation[J]. Remote Sensing, 2023, 15(5): 1330. |
100 | WU J J, YANG J Y, YANG H G, et al. Optimal geometry configuration of bistatic forward-looking SAR[C]∥2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2009: 1117-1120. |
101 | AN H Y, WU J J, SUN Z C, et al. Flight parameter design for translational invariant bistatic forward-looking SAR based on multiobjective particle swarm optimization[C]∥2016 CIE International Conference on Radar (RADAR). Piscataway: IEEE Press, 2016: 1-5. |
102 | LU Z, WANG Y K, XU M M, et al. Spacecraft formation design for bistatic SAR with GEO illuminator and LEO receiver[C]∥IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2018: 4451-4454. |
103 | LI N, HOU Y S, XING L, et al. An optimization method for distributed InSAR satellite formation configuration[C]∥2022 3rd China International SAR Symposium (CISS). Piscataway: IEEE Press, 2022: 1-4. |
104 | SCHARF D P, HADAEGH F Y, PLOEN S R. A survey of spacecraft formation flying guidance and control. Part Ⅱ: control[C]∥Proceedings of the 2004 American Control Conference. Piscataway: IEEE Press, 2004: 2976-2985. |
105 | LU J H, CHEN G R. A time-varying complex dynamical network model and its controlled synchronization criteria[J]. IEEE Transactions on Automatic Control, 2005, 50(6): 841-846. |
106 | ZHOU J, LU J N, LÜ J H. Pinning adaptive synchronization of a general complex dynamical network[J]. Automatica, 2008, 44(4): 996-1003. |
107 | HU Q L, SHI Y X, WANG C L. Event-based formation coordinated control for multiple spacecraft under communication constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(5): 3168-3179. |
108 | LIPPAY Z S, HOAGG J B. Formation control with time-varying formations, bounded controls, and local collision avoidance[J]. IEEE Transactions on Control Systems Technology, 2022, 30(1): 261-276. |
109 | SUI Z Z, PU Z Q, YI J Q, et al. Formation control with collision avoidance through deep reinforcement learning using model-guided demonstration[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(6): 2358-2372. |
110 | LIU H, MENG Q Y, PENG F C, et al. Heterogeneous formation control of multiple UAVs with limited-input leader via reinforcement learning[J]. Neurocomputing, 2020, 412: 63-71. |
111 | ZHOU Y L, LU F, PU G, et al. Adaptive leader-follower formation control and obstacle avoidance via deep reinforcement learning[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 4273-4280. |
112 | 田磊, 董希旺, 赵启伦, 等. 异构集群系统分布式自适应输出时变编队跟踪控制[J]. 自动化学报, 2021, 47(10): 2386-2401. |
TIAN L, DONG X W, ZHAO Q L, et al. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems[J]. Acta Automatica Sinica, 2021, 47(10): 2386-2401 (in Chinese). | |
113 | GONG J Y, JIANG B, MA Y J, et al. Distributed adaptive fault-tolerant formation control for heterogeneous multiagent systems with communication link faults[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 784-795. |
114 | LIU K X, DUAN P H, DUAN Z S, et al. Leader-following consensus of multi-agent systems with switching networks and event-triggered control[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(5): 1696-1706. |
115 | LIU K X, GU H B, WANG W, et al. Semiglobal consensus of a class of heterogeneous multi-agent systems with saturation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4946-4955. |
116 | LIU K X, CHEN Y, DUAN Z S, et al. Cooperative output regulation of LTI plant via distributed observers with local measurement[J]. IEEE Transactions on Cybernetics, 2018, 48(7): 2181-2191. |
117 | LU J H, YU X H, CHEN G R, et al. Characterizing the synchronizability of small-world dynamical networks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(4): 787-796. |
118 | 吴姣. 分布式SAR构型优化设计与基于事件驱动机制的构型控制[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
WU J. Configuration optimization design of distributed SAR and configuration control based on event-driven mechanism[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
119 | 李凯. 通讯受限下分布式SAR的轨道协同和波束同步控制[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
LI K. Orbit coordination and beam synchronization control of distributed SAR under communication constraints[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
120 | 孟自强, 李亚超, 汪宗福, 等. 弹载双基前视SAR俯冲段弹道设计方法[J]. 系统工程与电子技术, 2015, 37(4): 768-774. |
MENG Z Q, LI Y C, WANG Z F, et al. Design method of MBFL-SAR trajectory during terminal diving period[J]. Systems Engineering and Electronics, 2015, 37(4): 768-774 (in Chinese). | |
121 | 梅海文, 李亚超, 邢孟道, 等. 机-弹双基前视SAR俯冲段轨迹设计方法[J]. 系统工程与电子技术, 2019, 41(4): 752-758. |
MEI H W, LI Y C, XING M D, et al. Trajectory design method for the terminal diving period of AMBFL-SAR[J]. Systems Engineering and Electronics, 2019, 41(4): 752-758 (in Chinese). | |
122 | 郭媛, 索志勇, 王婷婷, 等. 弹载双基前视SAR构型参数优化设计方法[J]. 系统工程与电子技术, 2023, 45(11): 3449-3454. |
GUO Y, SUO Z Y, WANG T T, et al. Configuration parameter optimization design method of MBFL-SAR[J]. Systems Engineering and Electronics, 2023, 45(11): 3449-3454 (in Chinese). | |
123 | SUN Z C, WU J J, YANG J Y, et al. 3-D path planning for GEO-UAV bistatic SAR using multiobjective evolutionary algorithms[C]∥2016 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2016: 1-5. |
124 | SUN Z C, WU J J, YANG J Y, et al. Path planning for GEO-UAV bistatic SAR using constrained adaptive multiobjective differential evolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6444-6457. |
125 | SUN Z C, REN H, SUN H R, et al. Terminal trajectory planning for synthetic aperture radar imaging guidance based on chronological iterative search framework[J]. IEEE Transactions on Cybernetics, 2024, 54(5): 3065-3078. |
126 | 姚书剑. 基于GEO辐射源的机动平台双基SAR构型规划方法研究[D]. 成都: 电子科技大学, 2022. |
YAO S J. Research on configuration planning method of bistatic SAR for mobile platform based on GEO emitter[D]. Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese). | |
127 | ZHU F T, WU Y J. Research on radar seeker trajectory planning algorithm based on multi constraint optimization [C]∥Proceedings of the 24th Academic Annual Conference of the Beijing Mechanics Society 2018, 2018. |
128 | ZHU F T, WU Y J. Research on real time path planning algorithm based on optimal feedback control [C]∥Proceedings of the 24th Academic Annual Conference of the Beijing Mechanics Society 2018, 2018. |
129 | 李博皓, 吴云洁. 弹载雷达成像制导路径规划的LSTM模型研究[J]. 系统仿真学报, 2019, 31(12): 2696-2701. |
LI B H, WU Y J. LSTM model for trajectory design of missile-borne BFSAR imaging guidance[J]. Journal of System Simulation, 2019, 31(12): 2696-2701 (in Chinese). | |
130 | SINHA A, KUMAR S R. Supertwisting control-based cooperative salvo guidance using leader-follower approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3556-3565. |
131 | KUMAR S R, MUKHERJEE D. Cooperative salvo guidance using finite-time consensus over directed cycles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1504-1514. |
132 | YU J L, SHI Z X, DONG X W, et al. Impact time consensus cooperative guidance against the maneuvering target: Theory and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4590-4603. |
133 | DONG W, WANG C Y, WANG J N, et al. Fixed-time terminal angle-constrained cooperative guidance law against maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1352-1366. |
134 | ZHANG S, GUO Y, LIU Z G, et al. Finite-time cooperative guidance strategy for impact angle and time control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 806-819. |
135 | ZHANG L, LI D Y, JING L, et al. Appointed-time cooperative guidance law with line-of-sight angle constraint and time-to-go control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3142-3155. |
136 | LIANG L, DENG F, LU M B, et al. Analysis of role switch for cooperative target defense differential game[J]. IEEE Transactions on Automatic Control, 2021, 66(2): 902-909. |
137 | ZHANG M, LIANG C Y, MEI J S. Robust guidance law for cooperative aerial target circumnavigation of UAVs based on composite system theory[J]. Aerospace Science and Technology, 2023, 140: 108439. |
138 | CHEN Y, WU S F, WANG X L, et al. Time and FOV constraint guidance applicable to maneuvering target via sliding mode control[J]. Aerospace Science and Technology, 2023, 133: 108104. |
139 | MUKHERJEE D, KUMAR S R. Field-of-view constrained impact time guidance against stationary targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3296-3306. |
140 | YANG X Y, ZHANG Y C, SONG S M. Two-stage cooperative guidance strategy with impact-angle and field-of-view constraints[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(3): 590-599. |
141 | WANG C Y, DONG W, WANG J N, et al. Impact-angle-constrained cooperative guidance for salvo attack[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(4): 684-703. |
142 | LEE S, CHO N, KIM Y. Impact-time-control guidance strategy with a composite structure considering the seeker’s field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(8): 1566-1574. |
143 | DONG W, WANG C Y, WANG J N, et al. Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 2001-2015. |
144 | LIU S X, YAN B B, ZHANG T, et al. Coverage-based cooperative guidance law for intercepting hypersonic vehicles with overload constraint[J]. Aerospace Science and Technology, 2022, 126: 107651. |
145 | 孙红燕, 周洁, 陈超波, 等. 无人机集群协同免疫自学习围捕策略研究[J]. 战术导弹技术, 2023(1): 132-142. |
SUN H Y, ZHOU J, CHEN C B, et al. Cooperative hunting strategy of UAV swarm based on immune self-learning[J]. Tactical Missile Technology, 2023(1): 132-142 (in Chinese). |
[1] | 董希旺, 于江龙, 化永朝, 吕金虎, 任章. 集群系统智能协同IOODA技术体系架构与关键技术[J]. 航空学报, 2025, 46(4): 30911-030911. |
[2] | 何智川, 王江, 范世鹏, 王鹏, 侯淼. 事件触发机制下具有视场约束的三维协同制导[J]. 航空学报, 2024, 45(3): 328687-328687. |
[3] | 于江龙, 董希旺, 李清东, 吕金虎, 任章. 拦截机动目标的分布式协同围捕制导方法[J]. 航空学报, 2022, 43(9): 325817-325817. |
[4] | 向锦武, 董希旺, 丁文锐, 索津莉, 沈林成, 夏辉. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报, 2022, 43(10): 527570-527570. |
[5] | 李宇辉, 赵敏, 陈奇, 姚敏, 何紫阳. 复杂环境下翼伞系统的组合式航迹规划[J]. 航空学报, 2021, 42(6): 324566-324566. |
[6] | 李国飞, 朱国梁, 吕金虎, 刘克新, 武春风. 主-从多飞行器三维分布式协同制导方法[J]. 航空学报, 2021, 42(11): 524926-524926. |
[7] | 魏明英, 崔正达, 李运迁. 多弹协同拦截综述与展望[J]. 航空学报, 2020, 41(S1): 723804-723804. |
[8] | 董晓飞, 任章, 池庆玺, 李清东. 有向拓扑条件下针对机动目标的分布式协同制导律设计[J]. 航空学报, 2020, 41(S1): 723762-723762. |
[9] | 肖惟, 于江龙, 董希旺, 李清东, 任章. 过载约束下的大机动目标协同拦截[J]. 航空学报, 2020, 41(S1): 723777-723777. |
[10] | 王少博, 郭杨, 王仕成, 刘志国, 张帅. 带有引诱角色的多飞行器协同最优制导方法[J]. 航空学报, 2020, 41(2): 323402-323402. |
[11] | 赵建博, 杨树兴, 熊芬芬. 无导引头也无惯导导弹的协同制导[J]. 航空学报, 2019, 40(10): 323191-323191. |
[12] | 方科, 张庆振, 倪昆, 程林, 黄云涛. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5): 321958-321958. |
[13] | 周绍磊, 祁亚辉, 张雷, 闫实, 康宇航. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4): 320452-320452. |
[14] | 赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1): 20256-020256. |
[15] | 赵启伦, 陈建, 董希旺, 李清东, 任章. 拦截高超声速目标的异类导弹协同制导律[J]. 航空学报, 2016, 37(3): 936-948. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学