基于可达集与迭代学习的栖落机动轨迹控制方法

  • 吴惠敏 ,
  • 何真 ,
  • 彭余萧
展开
  • 1. 南京航空航天大学
    2. 南京航空航天大学 自动化学院

收稿日期: 2024-09-19

  修回日期: 2024-12-23

  网络出版日期: 2024-12-30

基金资助

国家自然科学基金

Iterative learning trajectory control method based on reachable sets for perching maneuvers

  • WU Hui-Min ,
  • HE Zhen ,
  • PENG Yu-Xiao
Expand

Received date: 2024-09-19

  Revised date: 2024-12-23

  Online published: 2024-12-30

摘要

飞行器的栖落机动要求飞行器进行大迎角飞行、快速减速并精准地降落于目标区域,涉及复杂的非线性动力学和快时变特性。针对栖落机动过程的复杂动力学特性与较高的控制性能要求引出的挑战,本文提出了一种基于可达集与迭代学习的轨迹控制设计方法。首先,针对栖落机动控制系统设计了改进的后向可达集计算算法。然后,提出了一种由可达集引导并保证收敛域的迭代学习轨迹控制方法。针对飞行器的栖落机动,该方法可以从不准确的初始栖落轨迹开始,利用每次轨迹对应的可达集引导下一次轨迹控制设计,不断迭代调整轨迹并优化控制器参数;经过数次学习迭代,飞行器即能够实现满足多约束的栖落机动动作、最终精确地降落在目标区域,并能确保大范围的收敛域。在此基础上,针对栖落机动模型未知的情况,设计了基于SINDy辨识算法的轨迹控制方法。最后,对所设计的栖落机动可达集算法与迭代学习轨迹控制方法进行了仿真验证与对比。仿真结果表明,改进的可达集算法能够更精确地求得非线性栖落模型的可达集;所设计的轨迹控制方法能够在大偏差的情况下,快速学习迭代、实现成功的栖落机动。

本文引用格式

吴惠敏 , 何真 , 彭余萧 . 基于可达集与迭代学习的栖落机动轨迹控制方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31227

Abstract

The perch maneuver of an aircraft requires high-angle-of-attack flight, rapid deceleration, and precise landing in a target area, involving complex nonlinear dynamics and fast time-varying characteristics. To address the challenges posed by these dynamic complexities and stringent control performance demands, this paper proposes a trajectory control design method based on reachability sets and iterative learning. First, an improved backward reachability set computation algorithm is developed for the perch maneuver control system. Then, an iterative learning trajectory control method is introduced, guided by the reachability set to ensure convergence. This method begins with an inaccurate initial perch trajectory and iteratively refines the trajectory and optimizes controller parameters using the reachability set of each iteration to guide the next. After several learning iterations, the aircraft can successfully perform the perch maneuver while meeting multiple constraints and accurately landing in the target area, with a large convergence domain guaranteed. Additionally, for cases where the perch maneuver model is unknown, a trajectory control method based on the SINDy identification algorithm is designed. Finally, simulation validation and comparison of the proposed reachability set algorithm and iterative learning trajectory control method are conducted. The results demonstrate that the improved reachability set algorithm more accurately captures the reachability set of the nonlinear perch model, and the designed trajectory control method can quickly learn and achieve successful perch maneuvers even with large initial deviations.

参考文献

[1] 曲东才. 超机动性技术及其战术优势探讨[J]. 飞机设计, 2006, 26(1): 65-68.
[2] Paneque J L, Martínez-de Dios J R, Ollero A, et al. Perception-aware perching on powerlines with multirotors[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3077-3084.
[3] Mao J, Nogar S, Kroninger C M, et al. Robust active visual perching with quadrotors on inclined surfaces[J]. IEEE Transactions on Robotics, 2023, 39(3): 1836-1852.
[4] Moore J, Cory R, Tedrake R. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees[J]. Bioinspiration & biomimetics, 2014, 9(2): 025013.
[5] Feroskhan M, Zheng Z, Go T H. Solutions to planar aircraft perching problem utilizing sideslip maneuvering[J]. Journal of Aerospace Engineering, 2020, 33(6): 04020066.
[6] 王无天, 何真, 岳珵. 飞行器栖落机动的轨迹跟踪控制及吸引域优化计算[J]. 北京航空航天大学学报, 2021, 47(02): 414-423.
[7] Song Y, Liang S, Niu E, et al. A perched landing control method based on incremental nonlinear dynamic inverse[C]//2022 4th International Conference on Control and Robotics (ICCR). IEEE, 2022: 82-88.
[8] Song Y, Tang Y, Ma B, et al. A singularity‐free online neural network‐based sliding mode control of the fixed‐wing unmanned aerial vehicle optimal perching maneuver[J]. Optimal Control Applications and Methods, 2023, 44(3): 1425-1440.
[9] 黄赞, 何真, 仇靖雯. 基于深度强化学习的无人机栖落机动控制策略设计[J]. 导航定位与授时, 2022, 9(06): 25-32.
[10] Fletcher L, Clarke R, Richardson T, et al. Improvements in learning to control perched landings[J]. The Aeronautical Journal, 2022, 126(1301): 1101-1123.
[11] KleinHeerenbrink M, France L A, Brighton C H, et al. Optimization of avian perching manoeuvres[J]. Nature, 2022, 607(7917): 91-96.
[12] 岳珵, 何真, 王无天. 变体辅助的无人机栖落机动模糊控制设计[J]. 南京航空航天大学学报, 2020, 52(06): 871-880.
[13] 周紫君. 无人机机动飞行的学习模型预测控制[D]. 南京航空航天大学, 2022.
[14] Althoff M. Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets[C]//Proceedings of the 16th international conference on Hybrid systems: computation and control. 2013: 173-182.
[15] AliKhan M, Peyada N K, Go T H. Flight dynamics and optimization of three-dimensional perching maneuver[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1791-1797.
[16] Tahk M J, Han S, Lee B Y, et al. Trajectory optimization and control algorithm of longitudinal perch landing assisted by thruster[C]//2016 European Control Conference (ECC). IEEE, 2016: 2247-2252.
[17] Seiler P, Balas G J. Quasiconvex sum-of-squares programming[C]//49th IEEE conference on decision and control (CDC). IEEE, 2010: 3337-3342.
[18] Zhen H, Yingying K, Da L. Deep stall landing strategy for small fixed-wing aircraft aided by morphing[C]//2017 29th Chinese Control And Decision Conference (CCDC). IEEE, 2017: 6772-6776.
[19] 李达. 飞行器栖落机动飞行轨迹优化与控制[D]. 南京航空航天大学, 2017.
[20] 王月, 何真, 张建兰, 等. 飞行器栖落机动切换控制设计及其吸引域计算[J]. 系统工程与电子技术, 2018, 40(11): 2519-2527.
[21] Althoff M, Frehse G, Girard A. Set propagation techniques for reachability analysis[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4(1): 369-395.
[22] Kurzhanski A B, Varaiya P. Ellipsoidal techniques for reachability analysis[C]//International workshop on hybrid systems: Computation and control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000: 202-214.
[23] Xu Z, Su H, Shi P, et al. Reachable set estimation for Markovian jump neural networks with time-varying delays[J]. IEEE Transactions on Cybernetics, 2016, 47(10): 3208-3217.
[24] Makino K, Berz M. Taylor models and other validated functional inclusion methods[J]. International Journal of Pure and Applied Mathematics, 2003, 6: 239-316.
[25] Awrejcewicz J, Bilichenko D, Cheib A K, et al. Estimating the region of attraction based on a polynomial Lyapunov function[J]. Applied Mathematical Modelling, 2021, 90: 1143-1152.
[26] Kleff Sebastien, Li Ning, Robotica. Robust Motion Planning in Dynamic Environments Based on Sampled-Data Hamilton–Jacobi Reachability[J]. Cambridge, 2020, 38(12): 2151-2172.
[27] Bansal S, Chen M, Herbert S, et al. Hamilton-jacobi reachability: A brief overview and recent advances[C]//2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017: 2242-2253.
[28] Zhang Y, de Visser C C, Chu Q P. Database building and interpolation for an online safe flight envelope prediction system[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5): 1166-1174.
[29] Fan C, Kapinski J, Jin X, et al. Locally optimal reach set over-approximation for nonlinear systems[C]//Proceedings of the 13th International Conference on Embedded Software. 2016: 1-10.
[30] Fan C. Formal methods for safe autonomy: Data-driven verification, synthesis, and applications[D]. Illinois, USA: University of Illinois at Urbana-Champaign, 2019.
[31] Duggirala P S, Viswanathan M. Parsimonious, simulation based verification of linear systems[C]//International conference on computer aided verification. Cham: Springer International Publishing, 2016: 477-494.
[32] Althoff M, Stursberg O, Buss M. Reachability analysis of linear systems with uncertain parameters and inputs[C]//2007 46th IEEE Conference on Decision and Control. IEEE, 2007: 726-732.
[33] Girard A. Reachability of uncertain linear systems using zonotopes[C]//International workshop on hybrid systems: Computation and control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 291-305.
[34] Althoff M. Reachability analysis and its application to the safety assessment of autonomous cars[D]. Technische Universit?t München, 2010.
[35] Schürmann B, Althoff M. Optimizing sets of solutions for controlling constrained nonlinear systems[J]. IEEE Transactions on Automatic Control, 2020, 66(3): 981-994.
[36] Brunton S L, Proctor J L, Kutz J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. Proceedings of the national academy of sciences, 2016, 113(15): 3932-3937.
[37] 王雯洁. 无人机机动飞行的模型预测控制[D]. 南京航空航天大学, 2019.
文章导航

/