[1] 曲东才. 超机动性技术及其战术优势探讨[J]. 飞机设计, 2006, 26(1): 65-68.[2] Paneque J L, Martínez-de Dios J R, Ollero A, et al. Perception-aware perching on powerlines with multirotors[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3077-3084.[3] Mao J, Nogar S, Kroninger C M, et al. Robust active visual perching with quadrotors on inclined surfaces[J]. IEEE Transactions on Robotics, 2023, 39(3): 1836-1852.[4] Moore J, Cory R, Tedrake R. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees[J]. Bioinspiration & biomimetics, 2014, 9(2): 025013.[5] Feroskhan M, Zheng Z, Go T H. Solutions to planar aircraft perching problem utilizing sideslip maneuvering[J]. Journal of Aerospace Engineering, 2020, 33(6): 04020066.[6] 王无天, 何真, 岳珵. 飞行器栖落机动的轨迹跟踪控制及吸引域优化计算[J]. 北京航空航天大学学报, 2021, 47(02): 414-423. [7] Song Y, Liang S, Niu E, et al. A perched landing control method based on incremental nonlinear dynamic inverse[C]//2022 4th International Conference on Control and Robotics (ICCR). IEEE, 2022: 82-88.[8] Song Y, Tang Y, Ma B, et al. A singularity‐free online neural network‐based sliding mode control of the fixed‐wing unmanned aerial vehicle optimal perching maneuver[J]. Optimal Control Applications and Methods, 2023, 44(3): 1425-1440.[9] 黄赞, 何真, 仇靖雯. 基于深度强化学习的无人机栖落机动控制策略设计[J]. 导航定位与授时, 2022, 9(06): 25-32.[10] Fletcher L, Clarke R, Richardson T, et al. Improvements in learning to control perched landings[J]. The Aeronautical Journal, 2022, 126(1301): 1101-1123.[11] KleinHeerenbrink M, France L A, Brighton C H, et al. Optimization of avian perching manoeuvres[J]. Nature, 2022, 607(7917): 91-96.[12] 岳珵, 何真, 王无天. 变体辅助的无人机栖落机动模糊控制设计[J]. 南京航空航天大学学报, 2020, 52(06): 871-880.[13] 周紫君. 无人机机动飞行的学习模型预测控制[D]. 南京航空航天大学, 2022.[14] Althoff M. Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets[C]//Proceedings of the 16th international conference on Hybrid systems: computation and control. 2013: 173-182.[15] AliKhan M, Peyada N K, Go T H. Flight dynamics and optimization of three-dimensional perching maneuver[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1791-1797.[16] Tahk M J, Han S, Lee B Y, et al. Trajectory optimization and control algorithm of longitudinal perch landing assisted by thruster[C]//2016 European Control Conference (ECC). IEEE, 2016: 2247-2252.[17] Seiler P, Balas G J. Quasiconvex sum-of-squares programming[C]//49th IEEE conference on decision and control (CDC). IEEE, 2010: 3337-3342.[18] Zhen H, Yingying K, Da L. Deep stall landing strategy for small fixed-wing aircraft aided by morphing[C]//2017 29th Chinese Control And Decision Conference (CCDC). IEEE, 2017: 6772-6776.[19] 李达. 飞行器栖落机动飞行轨迹优化与控制[D]. 南京航空航天大学, 2017.[20] 王月, 何真, 张建兰, 等. 飞行器栖落机动切换控制设计及其吸引域计算[J]. 系统工程与电子技术, 2018, 40(11): 2519-2527.[21] Althoff M, Frehse G, Girard A. Set propagation techniques for reachability analysis[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4(1): 369-395.[22] Kurzhanski A B, Varaiya P. Ellipsoidal techniques for reachability analysis[C]//International workshop on hybrid systems: Computation and control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000: 202-214.[23] Xu Z, Su H, Shi P, et al. Reachable set estimation for Markovian jump neural networks with time-varying delays[J]. IEEE Transactions on Cybernetics, 2016, 47(10): 3208-3217.[24] Makino K, Berz M. Taylor models and other validated functional inclusion methods[J]. International Journal of Pure and Applied Mathematics, 2003, 6: 239-316.[25] Awrejcewicz J, Bilichenko D, Cheib A K, et al. Estimating the region of attraction based on a polynomial Lyapunov function[J]. Applied Mathematical Modelling, 2021, 90: 1143-1152.[26] Kleff Sebastien, Li Ning, Robotica. Robust Motion Planning in Dynamic Environments Based on Sampled-Data Hamilton–Jacobi Reachability[J]. Cambridge, 2020, 38(12): 2151-2172.[27] Bansal S, Chen M, Herbert S, et al. Hamilton-jacobi reachability: A brief overview and recent advances[C]//2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017: 2242-2253.[28] Zhang Y, de Visser C C, Chu Q P. Database building and interpolation for an online safe flight envelope prediction system[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5): 1166-1174.[29] Fan C, Kapinski J, Jin X, et al. Locally optimal reach set over-approximation for nonlinear systems[C]//Proceedings of the 13th International Conference on Embedded Software. 2016: 1-10.[30] Fan C. Formal methods for safe autonomy: Data-driven verification, synthesis, and applications[D]. Illinois, USA: University of Illinois at Urbana-Champaign, 2019. [31] Duggirala P S, Viswanathan M. Parsimonious, simulation based verification of linear systems[C]//International conference on computer aided verification. Cham: Springer International Publishing, 2016: 477-494.[32] Althoff M, Stursberg O, Buss M. Reachability analysis of linear systems with uncertain parameters and inputs[C]//2007 46th IEEE Conference on Decision and Control. IEEE, 2007: 726-732.[33] Girard A. Reachability of uncertain linear systems using zonotopes[C]//International workshop on hybrid systems: Computation and control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 291-305.[34] Althoff M. Reachability analysis and its application to the safety assessment of autonomous cars[D]. Technische Universit?t München, 2010.[35] Schürmann B, Althoff M. Optimizing sets of solutions for controlling constrained nonlinear systems[J]. IEEE Transactions on Automatic Control, 2020, 66(3): 981-994. [36] Brunton S L, Proctor J L, Kutz J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. Proceedings of the national academy of sciences, 2016, 113(15): 3932-3937.[37] 王雯洁. 无人机机动飞行的模型预测控制[D]. 南京航空航天大学, 2019. |