首页 >

基于可达集与迭代学习的栖落机动轨迹控制方法

吴惠敏1,何真2,彭余萧1   

  1. 1. 南京航空航天大学
    2. 南京航空航天大学 自动化学院
  • 收稿日期:2024-09-19 修回日期:2024-12-23 出版日期:2024-12-30 发布日期:2024-12-30
  • 通讯作者: 何真
  • 基金资助:
    国家自然科学基金

Iterative learning trajectory control method based on reachable sets for perching maneuvers

  • Received:2024-09-19 Revised:2024-12-23 Online:2024-12-30 Published:2024-12-30

摘要: 飞行器的栖落机动要求飞行器进行大迎角飞行、快速减速并精准地降落于目标区域,涉及复杂的非线性动力学和快时变特性。针对栖落机动过程的复杂动力学特性与较高的控制性能要求引出的挑战,本文提出了一种基于可达集与迭代学习的轨迹控制设计方法。首先,针对栖落机动控制系统设计了改进的后向可达集计算算法。然后,提出了一种由可达集引导并保证收敛域的迭代学习轨迹控制方法。针对飞行器的栖落机动,该方法可以从不准确的初始栖落轨迹开始,利用每次轨迹对应的可达集引导下一次轨迹控制设计,不断迭代调整轨迹并优化控制器参数;经过数次学习迭代,飞行器即能够实现满足多约束的栖落机动动作、最终精确地降落在目标区域,并能确保大范围的收敛域。在此基础上,针对栖落机动模型未知的情况,设计了基于SINDy辨识算法的轨迹控制方法。最后,对所设计的栖落机动可达集算法与迭代学习轨迹控制方法进行了仿真验证与对比。仿真结果表明,改进的可达集算法能够更精确地求得非线性栖落模型的可达集;所设计的轨迹控制方法能够在大偏差的情况下,快速学习迭代、实现成功的栖落机动。

关键词: 可达集, 栖落机动, 迭代学习控制, 非线性系统, 齐诺多面体

Abstract: The perch maneuver of an aircraft requires high-angle-of-attack flight, rapid deceleration, and precise landing in a target area, involving complex nonlinear dynamics and fast time-varying characteristics. To address the challenges posed by these dynamic complexities and stringent control performance demands, this paper proposes a trajectory control design method based on reachability sets and iterative learning. First, an improved backward reachability set computation algorithm is developed for the perch maneuver control system. Then, an iterative learning trajectory control method is introduced, guided by the reachability set to ensure convergence. This method begins with an inaccurate initial perch trajectory and iteratively refines the trajectory and optimizes controller parameters using the reachability set of each iteration to guide the next. After several learning iterations, the aircraft can successfully perform the perch maneuver while meeting multiple constraints and accurately landing in the target area, with a large convergence domain guaranteed. Additionally, for cases where the perch maneuver model is unknown, a trajectory control method based on the SINDy identification algorithm is designed. Finally, simulation validation and comparison of the proposed reachability set algorithm and iterative learning trajectory control method are conducted. The results demonstrate that the improved reachability set algorithm more accurately captures the reachability set of the nonlinear perch model, and the designed trajectory control method can quickly learn and achieve successful perch maneuvers even with large initial deviations.

Key words: Reachable set, Perching maneuver, Iterative learning control, Nonlinear system, Zonotope

中图分类号: