流体力学与飞行力学

JF-22超高速风洞理论基础与关键技术

  • 姜宗林 ,
  • 韩桂来 ,
  • 汪运鹏 ,
  • 刘云峰 ,
  • 苑朝凯 ,
  • 罗长童 ,
  • 王春 ,
  • 胡宗民 ,
  • 刘美宽
展开
  • 1.中国科学院 力学研究所 空天飞行高温气动全国重点实验室,北京 100190
    2.中国科学院大学 工程科学学院,北京 100049
.E-mail: zljiang@imech.ac.cn

收稿日期: 2024-09-02

  修回日期: 2024-09-19

  录用日期: 2024-10-24

  网络出版日期: 2024-11-25

基金资助

国家自然科学基金(11727901)

Theoretical bases and key technologies of JF-22 hypervelocity wind tunnel

  • Zonglin JIANG ,
  • Guilai HAN ,
  • Yunpeng WANG ,
  • Yunfeng LIU ,
  • Chaokai YUAN ,
  • Changtong LUO ,
  • Chun WANG ,
  • Zongmin HU ,
  • Meikuan LIU
Expand
  • 1.State Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China
    2.School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2024-09-02

  Revised date: 2024-09-19

  Accepted date: 2024-10-24

  Online published: 2024-11-25

Supported by

National Natural Science Foundation of China(11727901)

摘要

国内外高超声速飞行关键技术的验证与考核一直都依赖于飞行试验,费时、昂贵、又具有后验性。几十年来,发展先进的高超声速地面试验装置一直是一个基础性的空气动力学前沿课题。目前世界上能够开展高马赫数飞行条件下的吸气式高超声速发动机试验的风洞试验能力依然不足,国家自然科学基金委员会国家重大科研仪器项目支持的JF-22超高速风洞的研制成功是一个重大突破。首先,综述了高超声速风洞研发的需求背景,介绍了基于工程实际的4项基本需求。并针对热化学反应气体流动,论述了空气动力学试验模拟准则从“流动相似”到“飞行条件复现”变革的必要性。然后,阐述了爆轰驱动超高速激波风洞理论,由此建立的激波风洞关键技术,及其解决的工程问题。最后,总结了在这个理论基础上构建的JF-22超高速风洞技术体系及其达到的主要性能指标和风洞调试结果。这些风洞调试结果既是对爆轰驱动超高速激波风洞理论的验证,也是对JF-22超高速风洞技术体系的综合考核。JF-22超高速风洞的高流速、高总温、高总压特色及其宽速域与宽空域性能,对于开展吸气式高超声速发动机与天地往返可重复使用空天飞行器的研发,推动高温气体动力学科前沿的拓展具有重要意义。

本文引用格式

姜宗林 , 韩桂来 , 汪运鹏 , 刘云峰 , 苑朝凯 , 罗长童 , 王春 , 胡宗民 , 刘美宽 . JF-22超高速风洞理论基础与关键技术[J]. 航空学报, 2025 , 46(5) : 531130 -531130 . DOI: 10.7527/S1000-6893.2024.31130

Abstract

The assessment of hypersonic flight technology at home and abroad always relies on flight tests, which are time-consuming and expensive, and have posterior risks. The development of advanced hypersonic ground test facilities has been a fundamental research topic in aerodynamics frontier for decades; however, the existing test facilities are still inadequate for the required technology development of air-breathing hypersonic engines at high Mach numbers. The successful development of the JF-22 hypervelocity wind tunnel under the National Major Scientific Research Instrument Project supported by the National Natural Science Foundation of China is a major breakthrough in this area. This paper first reviews the research background of the hypersonic wind tunnel and introduces the four basic requirements of the wind tunnel based on engineering practice. Considering thermo-chemically reacting gas flows, the necessity of revolutionary change of the wind tunnel test simulation criteria of experimental aerodynamics from “flow similarity simulation” to “flight condition reproduction” is discussed. Then, the theories and technologies for detonation-driven hypervelocity shock tunnels are systematically expounded, and the engineering problems solved with the theories and technologies are also discussed. Finally, the technology system of the JF-22 hypervelocity wind tunnel, developed on the basis of these theories is summarized and evaluated with the JF-22 calibration results. These results not only verify the theories of detonation-driven hypervelocity shock tunnel, but also show a comprehensive assessment of the JF-22’s technology system. The success of the JF-22 hypervelocity wind tunnel is a new milestone in developing advanced hypersonic test facilities. The JF-22 remarkable performances, such as high flow velocity, high total temperature and high stagnation pressure, and wide speed range and altitude are of significance for supporting the research on air-breathing hypersonic engines, aerospace aircrafts, and the frontier of high-temperature gas dynamics.

参考文献

1 LU F K, MARREN D E. Advanced hypersonic test facilities[M]∥ZARCHAN P. Progress in Astronautics and Aeronautics. Reston: AIAA, 2002: 1-15.
2 JIANG Z L, CHUE S M. Theories and technologies of hypervelocity shock tunnels[M]. Cambridge: Cambridge University Press, 2023: 1-10.
3 姜宗林. 中国高超风洞的理论创新与工程实践[J]. 工程研究-跨学科视野中的工程202214(6): 469-482.
  JIANG Z L. Theoretical innovation and engineering practice of Chinese hypervelocity wind tunnels[J]. Journal of Engineering Studies202214(6): 469-482 (in Chinese).
4 KUO Y H. Dissociation effects in hypersonic viscous flows[J]. Journal of the Aeronautical Sciences195724(5): 345-350.
5 ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. New York: McGraw-Hill Book Company, 1989: 449-461.
6 郭永怀. 现代空气动力学的问题[M]∥郭永怀文集. 北京: 科学出版社, 2009: 289-295.
  GUO Y H. Problems of modern aerodynamics[M]∥Guo Yonghuai’s Collected Works. Beijing: Science Press, 2009: 289-295 (in Chinese).
7 BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: Where we’ve been, where we’re going[J]. Progress in Aerospace Sciences200339(6): 511-536.
8 BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics200638(1): 129-157.
9 JIANG Z L, YU H R. Theories and technologies for duplicating hypersonic flight conditions for ground testing[J]. National Science Review20174(3): 290-296.
10 JIANG Z L, LI J P, HU Z M, et al. On theory and methods for advanced detonation-driven hypervelocity shock tunnels[J]. National Science Review20207(7): 1198-1207.
11 BRAUCKMANN G J, PAULSON J, WEILMUENSTER K J. Experimental and computational analysis of Shuttle Orbiter hypersonic trim anomaly[J]. Journal of Spacecraft and Rockets199532(5): 758-764.
12 PEEBLES C. Road to Mach 10: Lessons learned from the X-43A flight research program[M]. Reston: AIAA, 2008: 1-24.
13 DUFRENE A T, MACLEAN M, WADHAMS T, et al. Extension of LENS shock tunnel test times and lower Mach number capability: AIAA-2015-2017[R]. Reston: AIAA, 2015.
14 姜宗林, 俞鸿儒, 高超声速激波风洞研究进展 [J], 力学进展200939(6): 766-776.
  JIANG Z L, YU H R. Progress in hypersonic shock wind tunnel[J]. Advances in Mechanics200939(6): 766-776 (in Chinese).
15 姜宗林, 李进平, 胡宗民, 等. 高超声速飞行复现风洞理论与方法[J]. 力学学报201850(6): 1283-1291.
  JIANG Z L, LI J P, HU Z M, et al. Shock tunnel theory and methods for duplicating hypersonic flight conditions[J]. Chinese Journal of Theoretical and Applied Mechanics201850(6): 1283-1291 (in Chinese).
16 姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报201937(3): 347-355.
  JIANG Z L. Research progress of hypersonic high-enthalpy wind tunnel test technology[J]. Acta Aerodynamica Sinica201937(3): 347-355 (in Chinese).
17 STALKER R J. A study of the free-piston shock tunnel[J]. AIAA Journal19675(12): 2160-2165.
18 ITOH K, UEDA S, KOMURO T, et al. Improvement of a free piston driver for a high-enthalpy shock tunnel[J]. Shock Waves19988(4): 215-233.
19 HOLDEN M. Recent advances in hypersonic test facilities and experimental research[C]∥Proceedings of the 5th International Aerospace Planes and Hypersonics Technologies Conference. Reston: AIAA, 1993.
20 BIRD GA. A note on combustion driven shock tubes: AGARD Rep. 146[R]. Paris: AGARD, 1957.
21 YU H R. Recent developments in shock tune application[C]∥Proceedings of the 1989 National Symposium on Shock Wave Phenomena, 1989.
22 俞鸿儒, 李斌, 陈宏. 激波管氢氧爆轰驱动技术的发展进程[J]. 力学进展200535(3): 315-322.
  YU H R, LI B, CHEN H. The development of gaseous detonation driving techniques for a shock tube[J]. Advances in Mechanics200535(3): 315-322 (in Chinese).
23 YU H R, ESSER B, LENARTZ M, et al. Gaseous detonation driver for a shock tunnel[J]. Shock Waves19922(4): 245-254.
24 CHUE S M, TSAI C Y, BAKOS R J, et al. NASA’s HYPULSE facility at GASL - A dual mode, dual driver reflected-shock/expansion tunnel[M]∥Advanced Hypersonic Test Facilities. Reston: AIAA, 2002: 29-71.
25 BAKOS R, CALLEJA J, ERDOS J, et al. An experimental and computational study leading to new test capabilities for the HYPULSE facility with a detonation driver[C]∥Proceedings of the Advanced Measurement and Ground Testing Conference. Reston: AIAA, 1996.
26 李进平, 冯珩, 姜宗林, 等. 爆轰驱动激波管缝合激波马赫数计算[J]. 空气动力学学报200826(3): 291-296.
  LI J P, FENG H, JIANG Z L, et al. Numerical computation on the tailored shock Mach numbers for a hydrogen-oxygen detonation shock tube[J]. Acta Aerodynamica Sinica200826(3): 291-296 (in Chinese).
27 姜宗林, 李进平, 赵伟, 等. 长试验时间爆轰驱动激波风洞技术研究[J]. 力学学报201244(5): 824-831.
  JIANG Z L, LI J P, ZHAO W, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics201244(5): 824-831 (in Chinese).
28 TAYLOR G I. The dynamics of the combustion products behind plane and spherical detonation fronts in explosives[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences1950200(1061): 235-247.
29 NETTLETON M A. Gaseous detonation: Their nature, effects and control[J]. Journal of Loss Prevention in the Process Industries19881(2): 116-7.
30 ZEL’DOVICH Y B. Distribution of pressure and velocity in detonation products[J]. Journal of Experiments and Theoretical Physics194212: 389.
31 COATES P B, GAYDON A G. A simple shock tube with detonating driver gas[J]. Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences1965283(1392): 18-32.
32 陈宏, 冯珩, 俞鸿儒. 用于激波管/风洞的双爆轰驱动段[J]. 中国科学G辑200434(2): 183-191.
  CHEN H, FENG H, YU H R. Double detonation driving section for shock tube/wind tunnel[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 200434(2): 183-191 (in Chinese).
33 JIANG Z L, ZHAO W, WANG C, et al. Forward-running detonation drivers for high-enthalpy shock tunnels[J]. AIAA Journal200240: 2009-2016.
34 JIANG Z L, WU B, GAO Y L, et al. Development of the detonation-driven expansion tube for orbital speed experiments[J]. Science China Technological Sciences201558(4): 695-700.
35 高云亮, 赵伟, 姜宗林. 爆轰驱动高焓激波膨胀管性能研究[J]. 力学学报200840(4): 473-478.
  GAO Y L, ZHAO W, JIANG Z L. Experimental study on the performance of the detonation-driven high-enthalpy shock expansion tube[J]. Chinese Journal of Theoretical and Applied Mechanics200840(4): 473-478 (in Chinese).
36 周凯, 苑朝凯, 胡宗民, 等. JF-16膨胀管流场分析及升级改造[J]. 航空学报201637(11): 3296-3303.
  ZHOU K, YUAN C K, HU Z M, et al. Flow field analysis of JF-16 expansion tube and its upgrade[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3296-3303 (in Chinese).
37 周凯, 汪球, 胡宗民, 等. 爆轰驱动膨胀管性能研究[J]. 航空学报201637(3): 810-816.
  ZHOU K, WANG Q, HU Z M, et al. Performance study of a detonation-driven expansion tube[J]. Acta Aeronautica et Astronautica Sinica201637(3): 810-816 (in Chinese).
38 JIANG Z L, HU Z M, WANG Y P, et al. Advances in critical technologies for hypersonic and high-enthalpy wind tunnel[J]. Chinese Journal of Aeronautics202033(12): 3027-3038.
39 WANG Y P, JIANG Z L. Impulse force-measurement system[J]. Shock Waves202030(6): 603-613.
40 NIE S J, WANG Y P, JIANG Z L. Force measurement using strain-gauge balance in shock tunnel based on deep learning[J]. Chinese Journal of Aeronautics202336(8): 43-53.
41 MENG B Q, HAN G L, LUO C T, et al. Numerical investigation of the axial impulse load during the startup in the shock tunnel[J]. Aerospace Science and Technology201873: 332-342.
42 MENG B Q, HAN G L, ZHANG D L, et al. Aerodynamic measurement of a large aircraft model in hypersonic flow[J]. Chinese Physics B201726(11): 114702.
43 HAN G L, QI L, JIANG Z L. Analytic investigation on error of heat flux measurement and data processing for large curvature models in hypersonic shock tunnels[J]. Applied Mathematics Letters2022134: 108342.
44 QI L, HAN G L, JIANG Z L. Optimal design of E-type coaxial thermocouples for transient heat measurements in shock tunnels[J]. Applied Thermal Engineering2023218: 119388.
45 QI L, HAN G L, HU Z M, et al. Numerical investigations of the lateral heat transfer in coaxial thermocouples[J]. Numerical Heat Transfer Part A-Applications202282(6): 280-298.
文章导航

/