JF-22超高速风洞理论基础与关键技术研究

  • 姜宗林 ,
  • 韩桂来 ,
  • 汪运鹏 ,
  • 胡宗民 ,
  • 王春 ,
  • 罗长童 ,
  • 苑朝凯
展开
  • 1. 中国科学院
    2. 中国科学院力学研究所
    3. 中科院力学所

收稿日期: 2024-09-02

  修回日期: 2024-11-22

  网络出版日期: 2024-11-25

Study on Theoretical Basis and Technology of the JF-22 hypervelocity wind tunnel

  • JIANG Zong-Lin ,
  • HAN Gui-Lai ,
  • WANG Yun-Peng ,
  • HU Zong-Min ,
  • WANG Chun ,
  • LUO Chang-Tong ,
  • YUAN Chao-Kai
Expand

Received date: 2024-09-02

  Revised date: 2024-11-22

  Online published: 2024-11-25

摘要

国内外高超声速飞行关键技术的验证与考核一直都依赖于飞行试验,费时、昂贵、又具有后验性。几十年来,发展先进的高超声速地面实验装置一直是一个基础性的空气动力学前沿课题。目前能够开展高马赫数飞行条件下的吸气式高超声速发动机研发的风洞试验能力依然不足,国家自然科学基金委员会国家重大科研仪器项目支持的JF-22超高速风洞的研制成功是一个重大突破。本文首先综述了高超声速风洞需求背景,介绍了基于工程实际的四项基本需求。并针对热化学反应气体流动,论述了空气动力学实验模拟准则从“流动相似”到“飞行条件复现”变革的必要性。然后,阐述了爆轰驱动超高速激波风洞理论及其针对工程问题和由此建立的关键技术。最后,总结了在这个理论基础上构建的JF-22超高速风洞技术体系及其达到的主要性能指标和获得的风洞调试结果。这些风洞调试结果既是对于爆轰驱动超高速激波风洞理论的验证,也是对JF-22超高速风洞技术体系的综合考核。JF-22超高速风洞的高流速、高总温、高总压特色和宽速域与宽空域性能,对于开展吸气式高超声速发动机与天地往返空天飞行器研发和高温气体动力学科前沿拓展具有支撑性意义。

本文引用格式

姜宗林 , 韩桂来 , 汪运鹏 , 胡宗民 , 王春 , 罗长童 , 苑朝凯 . JF-22超高速风洞理论基础与关键技术研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31130

Abstract

The assessment of hypersonic flight technology at home and abroad have relied on flight tests for years, which are time-consuming and expensive,and have posterior risks. The development of advanced hypersonic test facilities has been a fundamental research topic in aerodynamic frontier for decades, however, the existing test facilities are still inadequate for the required technology development of air-breathing hypersonic engines at high flight Mach numbers. The successful development of the JF-22 hypervelocity wind tunnel supported by the National Major Scientific Research Instrument Project of the National Natural Science Foundation of China is a major breakthrough in this area. The research background of hypersonic wind tunnels is reviewed first and four basic requirements from engineering practice are summarized and explained in detail. The necessary change of the experimental simulation criteria of experimental aerodynamics from "flow similarity simulation" to "flight condition reproduction" is discussed for thermo-chemically reacting gas flow. Then, the theoretical basis for detonation-driven hypervelocity shock tunnels are systematically expounded by aiming at solving scientific problems and meeting engineering requirements. Finally, the technology system of JF-22 hypervelocity wind tunnel, proposed on the basis of this theory is summarized with illustration of JF-22 main performances demonstrated by wind tunnel calibration results. These calibration results are not only the verification of the detonation-driven hypervelocity shock tunnel theory, but also the comprehensive assessment of the JF-22’s technology system. The success of the JF-22 hypervelocity wind tunnel is a new milestone for developing advances hypersonic test facilities and its remarkable performances, such as high flow velocity, high total temperature and high total pressure, covering wide speed range and wide altitude are of significance to support the research of air-breathing hypersonic engines, aerospace aircrafts, and the frontier extension of high-temperature gas dynamics.

参考文献

[1] Lu FK, Marren DE,Advanced Hypersonic Test Facilities: Progress in Astronautics and Aeronautics[M],Reston, Virginia, American Institute of Aeronautics and Astronautics, Inc., 2002, 198.
[2] Jiang ZL and Chue SM, Theories and Technologies of Hypervelocity Shock Tunnels, Cambridge University Press, United Kingdom, 2023.
[3] 姜宗林, 中国高超风洞的理论创新与工程实践[J], 工程研究 — 跨学科视野中的工程, 2022, 14(6): 469-482.
[4] Kuo YH, Dissociation effects in hypersonic viscous flows[J] , Journal of the Aeronautical Sciences, 1957, 24(5): 345–350.
[5] Anderson J, Hypersonic and High-Temperature Gas Dynamics[M], New York: McGraw-Hill Book Company, 1989.
[6] 郭永怀, 现代空气动力学的问题[M], 郭永怀文集, 北京, 科学出版社, 2009.
[7] Bertin JJ, Cummings RM, Fifty years of hypersonics: where we’ve been, where we’re going[J], Progress in Aerospace Sciences, 2003, 39(6-7):511–536.
[8] Bertin JJ, Cummings RM, Critical hypersonic aerothermodynamic phenomena[J], Annual Review of Fluid Mechanics, 2006, 38(1): 129–157.
[9] Jiang ZL, Yu HR, Theories and technologies for duplicating hypersonic flight conditions for ground testing[J], National Science Review, 2017, 4(3): 290–296.
[10] Jiang ZL, Li J, Hu Z, et al., On theory and methods for advanced detonation-driven hypervelocity shock tunnels[J], National Science Review, 2020, 7(7): 1198–120
[11] Brauckmann GJ, Paulson John WJ, Weilmuenster K J, Experimental and computational analysis of Shuttle Orbiter hypersonic trim anomaly[J], Journal of Spacecraft and Rockets, 1995, 32(5): 758–764.
[12] Peebles C, Road to Mach 10: Lessons Learned from the X-43A Flight Research Program[M], American Institute of Aeronautics and Astronautics, Inc., 2008.
[13] Holden MS, Extension of LENS shock tunnel test time and lower Mach number capability, AIAA SciTech 2015, AIAA 2015-2017.
[14] 姜宗林, 俞鸿儒, 高超声速激波风洞研究进展[J], 力学进展, 2009, 39(6): 766-776.
[15] 姜宗林, 李进平, 胡宗民等, 高超声速飞行复现风洞理论与方法[J], 力学学报, 2018, 50(6): 1283-1291.
[16] 姜宗林, 高超声速高焓风洞试验技术研究进展[J], 空气动力学学报, 2019, 37(3): 347-355.
[17] Stalker RJ, A study of the free-piston shock tunnel, AIAA J 5: 2160-2165, 1967.
[18] Itoh K et al., Improvement of a free piston driver for a high-enthalpy shock tunnel, Shock Waves, 1998, 8: 215-233.
[19] Holden MS, Recent advances in hypersonic test facilities and experimental research, AIAA Paper 93-5005, 1993.
[20] Bird GA, A note on combustion driven tubes,Royal Aircraft Establishment,AGARD Rep. 1957-5, 146
[21] Yu HR, Recent developments in shock tune application, in Takayama eds. Proc of the 1989 National Symp on Shock Wave Phenomena, Sagamihara, Japan, Tohoku Print, Sendai, 1989, 1-9.
[22] 俞鸿儒, 李斌, 陈宏, 激波管氢氧爆轰驱动技术的发展进程[J], 力学进展, 2005, 35(3): 315-322.
[23] Yu HR, Esser B, Lenarts M et al., Gaseous detonation driver for a shock tunnel[J], Shock Waves, 1992, 2(4):245-254.
[24] Chue SM, Tsai CY, Bakos RJ et al., NASA’s HYPULSE facility at GASL - A dual mode, dual driver reflected-shock/expansion tunnel, In: Lu and Marren eds: Advanced Hypersonic Test Facilities, Progress in Astronautics and Aeronautics, Vol. 198, 2002.
[25] Bakos R, Calleja J, Erdos J, et al., An experimental and computational study leading to new test capabilities for the HYPULSE facility with a detonation driver[C], Advanced Measurement and Ground Testing Conference, New Orleans, LA. Reston, Virginia: AIAA, 1996: 2193.
[26] 李进平, 冯珩, 姜宗林, 爆轰驱动激波管缝合激波马赫数计算[J], 空气动力学学报, 2008, 26(3): 291-296.
[27] 姜宗林, 李进平, 赵伟, 长试验时间爆轰驱动激波风洞技术研究[J], 力学学报, 2012, 44(5): 824-831.
[28] Nettleton MA, Gaseous Detonation, Their Nature, effects and Control, Chapman and Hall, London, 1987.
[29] Zel’dovich YB, Distribution of pressure and velocity in detonation products, J of experiments and Theoretical Physics, 1942, 12:389.
[30] Taylor GI, The dynamics of the combustion products behind planar and spherical detonation fronts in explosive, Proc Roy Soc (London), 1950, A200, 235-247.
[31] Coatest PB and Gaydon AD, A simple shock tube with detonation driver gas, Proc Roy Soc (London), 1965, A283, 18-32.
[32] 陈宏, 冯珩, 俞鸿儒, 用于激波管/风洞的双爆轰驱动段[J], 中国科学G辑: 物理学、力学、天文学, 2004, 34(2): 183-191.
[33] Jiang ZL, Zhao W, Wang C, Forward-running detonation drivers for high-enthalpy shock tunnels[J]. AIAA Journal, 2002, 40(10): 2009-2016.
[34] Jiang ZL, Wu B, Gao YL, Development of the detonation-driven expansion tube for orbital speed experiments[J]. Science China Technological Sciences, 2015, 58(4): 695-700.
[35] 高云亮, 赵伟, 姜宗林, 爆轰驱动高焓激波膨胀管性能研究[J], 力学学报, 2008, 40(4): 473-478.
[36] 周凯, 苑朝凯, 胡宗民, JF-16膨胀管流场分析及升级改造[J], 航空学报, 2016, 37(11): 3296-3303.
[37] 周凯, 汪球, 胡宗民, 爆轰驱动膨胀管性能研究[J], 航空学报, 2016, 37(3): 810-816.
[38] Jiang ZL, Hu ZM, Wang YP, Advances in critical technologies for hypersonic and high-enthalpy wind tunnel[J], Chinese Journal of Aeronautics, 2020, 33(12): 3027-3038.
[39] Wang YP and Jiang ZL, Impulse force-measurement system, Shock Waves (2020) 30:603–613
[40] Nie SJ, Wang YP, Jiang ZL, Force measurement using strain-gauge balance in shock tunnel based on deep learning, Chinese Journal of Aeronautics, (2023), 36(8): 43–53.
[41] Meng BQ,Han GL,Luo CT,Jiang ZL,Numerical investigation of the axial impulse load during the startup in the shock tunnel, Aerospace Science and Technology, 2018, 73: 332-342.
[42] Meng BQ,Han GL,Luo CT,Jiang ZL and Zhang DL,Aerodynamic measurement of a large aircraft model in hypersonic flow. Chinese Physics B,2017,26(11):114702.
[43] Han GL, Qi L and Jiang ZL, Analytic investigation on error of heat flux measurement and data processing for large curvature models in hypersonic shock tunnels. Applied Mathematics Letters, 2022(134): 108342.
[44] Qi L, Han GL, Jiang ZL, Optimal design of E-type coaxial thermocouples for transient heat measurements in shock tunnels. Applied Thermal Engineering, 2023, 218: 119388.
[45] Qi L, Han GL, Hu ZM, Wang C and Jiang ZL, Numerical investigations of the lateral heat transfer in coaxial thermocouples. Numerical Heat Transfer, Part A: Applications, 2022, 82(6): 280-298.
文章导航

/