基于相对位姿信息的在轨服务卫星推进故障诊断方法

  • 梁振华 ,
  • 唐岷 ,
  • 郑侃 ,
  • 廖文和
展开
  • 1. 南京理工大学
    2. 江苏省南京理工大学机械工程学院

收稿日期: 2024-06-26

  修回日期: 2024-11-24

  网络出版日期: 2024-11-25

基金资助

国家自然科学基金项目;上海航天科技创新基金项目

Fault Diagnosis Method of Thruster of On-Orbit Service Spacecraft Based on Relative Position Information

  • LIANG Zhen-Hua ,
  • TANG Min ,
  • ZHENG Kan ,
  • LIAO Wen-He
Expand

Received date: 2024-06-26

  Revised date: 2024-11-24

  Online published: 2024-11-25

摘要

针对在轨服务卫星推力器故障诊断方法对观测噪声鲁棒性差问题,提出基于服务星相对位姿观测信息的诊断方法。首先,基于推进系统的工作原理构建了故障模型,采用基于后验协方差矩阵的数据融合方法处理传感器数据,防止传感器故障、相对位姿测量误差过大导致推力器误诊断;随后,采用自适应EKF解决推力器故障下所出现的预测步失准问题;分析了噪声对故障诊断系统的影响,并据此提出基于广义似然比的故障诊断策略,将故障与无故障推力器的诊断指标差值增大了约5倍。仿真结果表明,故障情况下所提出的自适应EKF相比传统EKF的滤波误差减小了约80%,故障量估计速度提升了34%;当故障量较小时,对于卡死故障的最快诊断速度为10步,最小诊断误差约为0.5%;而对于效率下降类故障,最快诊断速度为38步,最小诊断误差为3%。构建了在轨任务场景,采用LQR控制律控制服务星在轨道场景下逼近目标星,过程中模拟了服务星推力器发生效率下降故障,验证了所提出的方法在传统故障诊断方法出现误诊的情况下成功诊断出故障的能力。

本文引用格式

梁振华 , 唐岷 , 郑侃 , 廖文和 . 基于相对位姿信息的在轨服务卫星推进故障诊断方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.30867

Abstract

In order to solve the problem of the susceptibility of noise in the fault diagnosis of on-orbit service(OOC) satel-lites’thrusters,a diagnosis method based on the relative position information of OOC was proposed. Firstly, a fault model was constructed based on the mechanism of the propulsion system, and a data fusion method based on the posterior covariance matrix was used to process sensor data to prevent excessive relative position measurement error from caused by sensor failure,which could lead to misdiagnosis. Subsequently, an adaptive EKF was used to solve the prob-lem of inaccurate prediction step when thruster failure occurred. The influence of noise on the fault diagnosis system is analyzed, and a fault diagnosis strategy based on generalized likelihood ratio was proposed, which increased the differ-ence between the diagnostic index of fault and non-fault thrusters by about 5 times. Numercial simulation results show that the filtering error of the proposed adaptive EKF was reduced by about 80% compared with that of traditional EKF in the case of faults, and the speed of fault estimation was increased by 34%. When the fault was subtle, the fastest diagno-sis speed for stuck fault were 10 steps, and the minimum diagnosis error was about 0.5%.For efficiency reduction faults, the fastest diagnosis speed were 38 steps, and the minimum diagnosis error was 3%. In this paper,an on-orbit mission scenario was constructed, and the LQR control law was used to control the OOC to approach the target satellite in the orbital scenario, and the efficiency reduction fault of the OOC’s thruster was simulated in the process, which verified the ability of the proposed method to successfully diagnose the fault whiletraditional fault diagnosis method misdiagnosed.

参考文献

[1]王明明, 罗建军, 袁建平, 等.空间在轨装配技术综述[J].航空学报, 2021, 42(1):40-54
[2]WANG M M, LUO J J, YUAN J P, et al.In-orbit assembly technology: Review[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(1):40-54
[3]孟光, 韩亮亮, 张崇峰.空间机器人研究进展及技术挑战[J].航空学报, 2021, 42(1):1-25
[4]MENG G, HAN L L, ZHANG C F.Research progress and technical challenges of space robot[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(1):1-25
[5]胡庆雷, 邵小东, 杨昊旸, 等.航天器多约束姿态规划与控制:进展与展望[J].航空学报, 2022, 43(10):395-423
[6]HU Q L, SHAO X F, YANG H Y, et al.Spacecraft attitude planning and control under multiple constraints: Review and prospects[J].Acta Aeronautica et Astronautica Sinica, 2022, 43(10):395-423
[7]沈毅,李利亮,王振华.航天器故障诊断与容错控制技术研究综述[J].宇航学报, 2020, 41(6):647-656
[8]SHEN Y, LI C L, WANG Z H.A Review of Fault Diagnosis and Fault-Tolerant Control Techniques for Spacecraft[J].Journal of Ast-onautics, 2020, 41(6):647-656
[9]Fauré M, Henry D, Cieslak J, et al.Optim-zation of Spacecraft Thrusters Configuration Under Fault Diagnosability and Recoverabil-iy Constraints[J].IEEE Transactions on Aer-ospace and Electronic Systems, 2023, 59(5):5275-5286
[10]Fonod R, Henry D, Charbonnel C, et al.Robust FDI for fault-tolerant thrust allocati-on with application to spacecraft rendezvous[J].Control Engineering Practice, 2015, 42(\):12-27
[11]Guo X-G, Tian M-E, Li Q, et al.Multiple- fault diagnosis for spacecraft attitude controlsystems using RBFNN-based observers[J].Aerospace Science and Technology, 2020, 106(\):106195-\
[12]Lu P, Eykeren L V, Kampen E v, et al.Se-lective-Reinitialization Multiple-Model Adapt-ive Estimation for Fault Detection and Dia-gnosis[J].Journal of Guidance, Control, and Dynamics, 2015, 38(8):1409-1424
[13]Ru J, Li X R.Variable-Structure Multiple-Model Approach to Fault Detection,Identifi-cation,and Estimation[J].IEEE Transactions on Control Systems Technology, 2008, 16(5):1029-1038
[14]Luo T, Liu M, Zhao H, et al.Data-driven fault monitoring for spacecraft control mom-ent gyro with slice residual attention netwo-rk[J].Journal of the Franklin Institute, 2022, 359(16):9313-9333
[15]Guo Y, Liu Q, He X.Active fault diagnosi-s for stochastic systems subject to non-con-vex input constraints[J].Automatica, 2024, 164(\):111631-\
[16]Patton R J, Uppal F J, Simani S, et al.R-obust FDI applied to thruster faults of a satellite system[J].Control Engineering Pract-ice, 2010, 18(9):1093-1109
[17]Kawatsu K, Fujii G, Nagata T, et al.Preli-minary Demonstration of Concept for Fault Diagnosis in Resilient Redundant SpacecraftPropulsion[M]. Gaylord:AIAA SCITECH Forum, 2023.
[18]Hu D, Sarosh A, Dong Y-F.A novel KFC-M based fault diagnosis method for unkno-wn faults in satellite reaction wheels[J].ISATransactions, 2012, 51(2):309-316
[19]Wang C, Zhang Y, Zhao Z, et al.Dynamic model-assisted transferable network for liqui-d rocket engine fault diagnosis using limitedfault samples[J].Reliability Engineering & System Safety, 2024, 243(\):109837-\
[20]唐艺璠, 窦立谦, 季春惠, 等.基于深度迁移学习的航天器故障诊断[J].空间控制技术与应用, 2021, 47(3):57-63
[21]TANG Y F, DOU L Q, JI C H, ET AL.D-eep Transfer Learning-Based Fault Diagnosisof Spacecraft Attitude System[J].Aerospace Control and Application, 2021, 47(3):57-63
[22]Ai S, Song J, Cai G.A real-time fault dia-gnosis method for hypersonic air vehicle w-ith sensor fault based on the auto temporal convolutional network[J].Aerospace Science and Technology,, 2021, 119(\):107220.-\
[23]He Z, Shen C, Chen B, et al.A new feat-ureboosting based continual learning method for bearing fault diagnosis with incremental fault types[J].Advanced Engineering Inform-atics, 2024, 61(\):102469-\
[24]金洋, 王日新, 徐敏强.基于状态记忆的航天器自主故障诊断方法[J].系统工程与电子技术, 2015, 37(6):1452-1458
[25]JIN Y, WANG R X, XV M Q.Spacecraft autonomous fault diagnosis method based on state memory[J].Systems Engineering and Electronics., 2015, 37(6):1452-1458
[26]Valdes A, Khorasani K.A pulsed plasma t-hruster fault detection and isolation strategy for formation flying of satellites[J].Applied Soft Computing, 2010, 10(3):746-758
[27]Tang L, Chen S, Wang K, et al.Redundan-cy gyroscopes bias fault diagnosis based on thecorrelated measurement equations in Fe-ngyun-4 spacecraft[J].Advances in Space R-esearch, 2022, 70(2):523-545
[28]Barzegar A, Rahimi A.A dissipativity-based robust fault diagnosis approach for clusters of small satellites[J].Acta Astronautica, 2024, 214(\):182-195
[29]Mei Y, Liao Y, Gong K, et al.Fuzzy adap-tive sliding mode fault estimation and fixed-time fault-tolerant control for coupled space-craft based on SE(3)[J].Aerospace Science and Technology, 2022, 126(\):107673-\
[30]Hu Q, Zhang Y, Huo X, et al.Adaptive In-tegral-type Sliding Mode Control for Space-craft Attitude Maneuvering Under Actuator Stuck Failures[J].Chinese Journal of Aeron-autics, 2011, 24(1):32-45
[31]Xiao B, Hu Q, Zhang Y.Adaptive Sliding Mode Fault Tolerant Attitude Tracking Con-trol for Flexible Spacecraft Under Actuator Saturation[J].IEEE Transactions on ControlSystems Technology, 2012, 20(6):1605-1612
[32]Zhang R, Du H, Wu Y, et al.Fault Detect-ion and Diagnosis for Thrust Drop of Laun-ch Vehicles Against Disturbances[J].Journal of Spacecraft and Rochets, 2023, 60(3):924-941
[33]Li Y, Hu Q, Shao X.Neural network-based fault diagnosis for spacecraft with single-gi-mbal control moment gyros[J].Chinese Jou-rnal of Aeronautics, 2022, 35(7):261-273
[34]聂小辉, 金磊.核主元分析在航天器飞轮自主故障诊断的应用[J].北京航空航天大学学报, 2023, 49(8):2119-2128
[35]NIE X H, J L.Application of kernel principal component analysis in autonomous fault diagnosis for spacecraft flywheel[J].Journal of Beijing University of Aeronautics and A-stronautics, 2023, 49(8):2119-2128
[36]Suo M, Zhu B, An R, et al.Data-driven fault diagnosis of satellite power system using fuzzy Bayes risk and SVM[J].AerospaceScience and Technology, 2019, 84(\):1029-1105
[37]闻 新, 史 超, 方紫帆.基于小波神经网络的航天器故障诊断方法[J].兵工自动化, 2019, 38(3):59-64
[38]WEN X, SHI C, FANG Z F.Fault Diagno-sis Method of Spacecraft Based on Wavelet Neural Network[J].[J].Ordnance Industry Auto-mation, 2019, 38(3):59-64
[39]刘伟杰, 谌颖.航天器空间自主交会故障诊断与容错控制的集成设计[J].航天控制, 2015, 33(3):38-44
[40]LIU W J, KAN Y.Integrated Design of Fa-ult Diagnosis and Fault-Tolerant Control for Spacecraft Autonomous Rendezvous[J].Aerospace Control, 2015, 33(3):38-44
[41]Gao C, Zhao Q, Duan G.Robust actuator fault diagnosis scheme for satellite attitude control systes[J].Journal of the Franklin Institute, 2013, 350(9):2560-2580
[42]Duan G R, Patton R J.Robust fault detecti-on using Luenberger-type unknown input o-bservers-a parametric approach[J].Internatio-nal Journal of Systems Science, 2001, 32(4):533-540
[43]Fonod R, Henry D, Bornschlegl E, et al.T-hruster Fault Detection,Isolation and Acco-mmodation for an Autonomous Spacecraft[J].IFAC Proceedings Volumes, 2014, 47(3):10543-10548
[44]Sun S-L, Deng Z-L.Multi-sensor optimal in-formation fusion Kalman filter[J].Automati-ca, 2004, 40(6):1017-1023
[45]Sage A P, Husa G W.Algorithms for sequ-ential adaptive estimation of prior statistics[C]//Proceedings of the 1969 IEEE Sympos-ium on Adaptive Processes (8th) Decision and Control, 1969; 61-70.
[46]Park H E, Kim Y R.Relative navigation for autonomous formation flying satellites using the state-dependent Riccati equation filter[J].Advances in Space Research, 2016, 57(1):166-82
[47]Xiao B, Hu Q, Zhang Y, et al.Fault-Toler-ant Tracking Control of Spacecraft with Att-itude-Only Measurement Under Actuator Fa-ilures[J].Journal of Guidance, Control, and Dynamics, 2014, 37(3):838-849
文章导航

/