可靠性分析改进元模型重要抽样算法
收稿日期: 2024-05-27
修回日期: 2024-07-31
录用日期: 2024-11-13
网络出版日期: 2024-11-25
基金资助
重庆市自然科学基金(CSTB2022NSCQ-MSX0861);航空科学基金(20220009053001);陕西省科学技术协会青年人才托举计划(20230446);广东省基础与应用基础研究基金(2022A1515011515);国家自然科学基金(12002237)
Enhanced metamodel-based importance sampling method for reliability analysis
Received date: 2024-05-27
Revised date: 2024-07-31
Accepted date: 2024-11-13
Online published: 2024-11-25
Supported by
Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0861);Aeronautical Science Foundation of China(20220009053001);Young Talent Fund of Association for Science and Technology in Shaanxi of China(20230446);Guangdong Basic and Applied Basic Research Foundation(2022A1515011515);National Natural Science Foundation of China(12002237)
为了高效地开展结构可靠性分析,通过引入代理模型更新的误差停止准则,提出了改进的元模型重要抽样算法。首先,建立了元模型重要抽样算法中失效概率预测值与真实值之间相对误差的解析关系;其次,推导了失效概率预测值与真实值之间相对误差上限与Kriging代理模型预测精度之间的近似关系,通过失效概率预测值与真实值之间相对误差不大于预设精度,建立了基于失效概率预测误差指导的Kriging代理模型更新准则,提高了Kriging代理模型在元模型重要抽样算法中的更新效率;最后,将所提的改进元模型重要抽样算法应用至数值算例及涡轮轴疲劳寿命可靠性分析的工程算例中,计算结果验证了所提算法的高效性和准确性。
关键词: 可靠性分析; 元模型; 重要抽样算法; Kriging代理模型; 误差停止准则
员婉莹 , 李逢源 , 黄博 , 王思予 , 焦韵菲 , 白馨雨 , 黄雪琪 . 可靠性分析改进元模型重要抽样算法[J]. 航空学报, 2025 , 46(7) : 230738 -230738 . DOI: 10.7527/S1000-6893.2024.30738
To give an efficient analysis of structural reliability, an enhanced metamodel-based importance sampling method is proposed in this paper by introducing an error-based stopping criterion for updating the Kriging model. Firstly, an analytical relationship of the relative error between the estimate of failure probability by the metamodel-based importance sampling method and the true value obtained by the actual limit state function is established. Secondly, an approximate relationship between the upper bound of the relative error between the estimate of failure probability and the true value and the prediction accuracy of the Kriging model is derived. By ensuring that the relative error between the estimate of failure probability by the metamodel-based importance sampling method and the true value obtained by the actual limit state function does not exceed a predefined accuracy, an error-based stopping criterion for updating the Kriging model is established to improve the efficiency of the existing metamodel-based importance sampling method. Finally, the proposed method is applied to numerical examples and engineering examples of reliability analysis of turbine shaft fatigue life. The results verify the efficiency and accuracy of the proposed method.
1 | WEI X P, YAO Z Y, ZHANG Z, et al. First-order reliability method to problems involving multimodal distributions[J]. Structural and Multidisciplinary Optimization, 2023, 66(6): 143. |
2 | HU Z L, MANSOUR R, OLSSON M, et al. Second-order reliability methods: A review and comparative study[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 3233-3263. |
3 | YUN W Y, LU Z Z, JIANG X. An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy[J]. Reliability Engineering & System Safety, 2019, 187: 174-182. |
4 | ZHANG L W. An improved fourth-order moment reliability method for strongly skewed distributions?[J]. Structural and Multidisciplinary Optimization, 2020, 62(3): 1213-1225. |
5 | LU H, CAO S, ZHU Z C, et al. An improved high order moment-based saddlepoint approximation method for reliability analysis[J]. Applied Mathematical Modelling, 2020, 82: 836-847. |
6 | AU S K, BECK J L. Important sampling in high dimensions[J]. Structural Safety, 2003, 25(2): 139-163. |
7 | ZHANG X B, LU Z Z, CHENG K, et al. A novel reliability sensitivity analysis method based on directional sampling and Monte Carlo simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2020, 234(4): 622-635. |
8 | PAPAIOANNOU I, STRAUB D. Combination line sampling for structural reliability analysis[J]. Structural Safety, 2021, 88: 102025. |
9 | ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145-154. |
10 | ECHARD B, GAYTON N, LEMAIRE M, et al. A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[J]. Reliability Engineering & System Safety, 2013, 111: 232-240. |
11 | DUBOURG V, SUDRET B, DEHEEGER F. Metamodel-based importance sampling for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2013, 33: 47-57. |
12 | CADINI F, SANTOS F, ZIO E. An improved adaptive Kriging-based importance technique for sampling multiple failure regions of low probability[J]. Reliability Engineering & System Safety, 2014, 131: 109-117. |
13 | CADINI F, SANTOS F, ZIO E. Passive systems failure probability estimation by the meta-AK-Passive systems failure probability estimation by the meta-AK-IS2 algorithm algorithm[J]. Nuclear Engineering and Design, 2014, 277: 203-211. |
14 | ZHU X M, LU Z Z, YUN W Y. An efficient method for estimating failure probability of the structure with multiple implicit failure domains by combining Meta-IS with IS-AK[J]. Reliability Engineering & System Safety, 2020, 193: 106644. |
15 | 史朝印, 吕震宙, 李璐祎, 等. 基于自适应Kriging代理模型的交叉熵重要抽样法[J]. 航空学报, 2020, 41(1): 223123. |
SHI Z Y, LV Z Z, LI L Y, et al. Cross entropy importance sampling method based on adaptive Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 223123 (in Chinese). | |
16 | 赵欢, 高正红, 夏露. 基于新型多可信度代理模型的多目标优化方法[J]. 航空学报, 2023, 44(6): 126962. |
ZHAO H, GAO Z H, XIA L. Novel multi-fidelity surrogate model assisted many-objective optimization method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 126962 (in Chinese). | |
17 | 吕震宙, 宋述芳, 李璐祎, 等. 结构/机构可靠性设计基础[M]. 西安: 西北工业大学出版社, 2019: 200-205. |
LV Z Z, SONG S F, LI L Y, et al. Fundamentals of structure and mechanism reliability design[M]. Xi’an: Northwestern Polytechnical University Press, 2019: 200-205 (in Chinese). | |
18 | 张洪铭, 顾晓辉, 邸忆. 基于树形马氏链模型的可靠性分析方法[J]. 航空学报, 2019, 40(5): 222643. |
ZHANG H M, GU X H, DI Y. Reliability analysis method based on Tree Markov Chain model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5) : 222643 (in Chinese). | |
19 | STONE M. Cross-validatory choice and assessment of statistical predictions[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1974, 36(2): 111-133. |
20 | KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892. |
21 | HU Z, MAHADEVAN S. A single-loop Kriging surrogate modeling for time-dependent reliability analysis[J]. Journal of Mechanical Design, 2016, 138(6): 061406. |
22 | 郑新前, 王钧莹, 黄维娜, 等. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 027099. |
ZHENG X Q, WANG J Y, HUANG W N, et al. Uncertainty-based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 027099 (in Chinese). | |
23 | MANSON S S. Fatigue: A complex subject—some simple approximations[J]. Experimental Mechanics, 1965, 5(4): 193-226. |
24 | INCE A, GLINKA G. A modification of Morrow and Smith-Watson-Topper mean stress correction models[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34(11): 854-867. |
25 | 《航空发动机设计用材料数据手册》编委会. 航空发动机设计用材料数据手册(第四册)[M]. 北京: 航空工业出版社, 2010: 79-84. |
Editorial Committee of Data Manual on Materials for Aero Engine Design. Data manual on materials for aero engine design book: Ⅳ[M]. Beijing: Aviation Industry Press, 2010: 79-84 (in Chinese). | |
26 | TRUFYAKOV V I, KOVAL’CHUK V S. Determination of life under two-frequency loading. Report no.2. Proposed method[J]. Strength of Materials, 1982, 14(10): 1303-1308. |
27 | YUN W Y, LV Z Z, ZHANG W X, et al. A novel inverse strain range-based adaptive Kriging method for analyzing the combined fatigue life reliability[J]. Structural and Multidisciplinary Optimization. 2021, 64(6): 3311-3330. |
/
〈 |
|
〉 |