6G低空通信场景下的无人机部署优化研究

  • 张海君 ,
  • 夏清悦 ,
  • 马旭 ,
  • 任超 ,
  • 陆阳
展开
  • 1. 北京科技大学
    2. 中国电力科学研究院

收稿日期: 2024-09-30

  修回日期: 2024-11-18

  网络出版日期: 2024-11-20

基金资助

国家自然科学基金资助项目;国家自然科学基金资助项目;国家自然科学基金资助项目;国防基础科研计划资助项目;北京市自然科学基金资助项目;通信抗干扰全国重点实验室资助项目

A review of unmanned aerial vehicles deployment optimization in 6G low-altitude communication scenarios

  • ZHANG Hai-Jun ,
  • XIA Qing-Yue ,
  • MA Xu ,
  • REN Chao ,
  • LU Yang
Expand

Received date: 2024-09-30

  Revised date: 2024-11-18

  Online published: 2024-11-20

Supported by

National Natural Science Foundation of China;National Natural Science Foundation of China;National Natural Science Foundation of China

摘要

随着6G标准的迅速演进,无人机在低空通信网络中的应用已成为当前的研究热点。针对无人机在低空通信场景下的部署优化问题,开展了无人机的静态与动态部署策略研究,并对相关的部署优化算法进行了分析。文章首先阐述了无人机部署的三种基本策略,即静态部署、单无人机动态部署和多无人机动态部署,探讨了它们在不同应用场景下的优势。然后,详细讨论了无人机部署优化模型,从低空通信网络的信道模型、约束条件和目标函数三个方面分别进行阐述。在此基础上,系统地对现有的无人机部署优化算法进行了对比,从多角度分析了各类算法的优势与不足。最后展望了未来无人机部署优化的研究方向,并结合智能反射面、通感一体化等前沿技术进行了分析,旨在为相关领域的研究人员提供参考和借鉴。

本文引用格式

张海君 , 夏清悦 , 马旭 , 任超 , 陆阳 . 6G低空通信场景下的无人机部署优化研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31296

Abstract

With the rapid evolution of 6G standards, the application of unmanned aerial vehicles (UAVs) in low-altitude communica-tion networks has become a current research hotspot. This paper conducts research on the static and dynamic deploy-ment strategies of UAVs in low-altitude communication scenarios and analyzes the associated deployment optimization algorithms. The article first elaborates on three basic strategies for UAV deployment: static deployment, single-UAV dy-namic deployment, and multi-UAV dynamic deployment, exploring their advantages in different application scenarios. Then, it discusses in detail the UAV deployment optimization model, explaining from three aspects: the channel model of low-altitude communication networks, constraints, and objective functions. Based on this, the paper systematically com-pares existing UAV deployment optimization algorithms, analyzing the strengths and weaknesses of various algorithms from multiple perspectives. Finally, it looks forward to future research directions in UAV deployment optimization and ana-lyzes in conjunction with cutting-edge technologies such as intelligent reflective surfaces and integrated communication and sensing, aiming to provide references and insights for researchers in related fields.

参考文献

[1]易芝玲, 王森, 韩双锋, 等.从到的思考:需求、挑战与技术发展趋势[J].北京邮电大学学报, 2020, 43(02):1-9 [2]YI Z L, WANG S, HANG S F, et al.From 5G to 6G: requirements,challenges and technical trends[J].Journal of Beijing University of Posts and Telecom-munications, 2020, 43(02):1-9 [3]陈新颖, 盛敏, 李博, 等.面向的无人机通信综述[J].电子与信息学报, 2022, 44(03):781-789 [4]CHENG X Y, SHENG M, LI B, et al.Survey on un-manned aerial vehicle communications for 6G[J].Journal of Electronics & Information Technology, 2022, 44(03):781-789 [5]GUPTA L, JAIN R, VASZKUN G.Survey of im-portant issues in UAV communication networks[J].IEEE communications surveys & tutorials, 2015, 18(2):1123-1152 [6]VAEZI M, AZARI A, KHOSRAVIRAD S R, et al.Cellular,wide-area,and non-terrestrial IoT: A survey on 5G advances and the road toward 6G[J].IEEE Communications Surveys & Tutorials, 2022, 24(2):1117-1174 [7]JAVED S, HASSAN A, AHMAD R, et al.State-of-the-art and future research challenges in uav swarms[J]. IEEE Internet of Things Journal, 2024. [8]MOZAFFARI M, SAAD W, BENNIS M, et al.A tuto-rial on UAVs for wireless networks: Applications,challenges,and open problems[J].IEEE communica-tions surveys & tutorials, 2019, 21(3):2334-2360 [9]CHEN R, SUN Y, LIANG L, et al.Joint power alloca-tion and placement scheme for UAV-assisted IoT with QoS guarantee[J].IEEE Transactions on Vehicular Technology, 2021, 71(1):1066-1071 [10]NGUYEN H T, TUAN H D, DUONG T Q, et al.Joint D2D assignment,bandwidth and power alloca-tion in cognitive UAV-enabled networks[J].IEEE Transactions on Cognitive Communications and Net-working, 2020, 6(3):1084-1095 [11]ZHONG X, GUO Y, LI N, et al.Joint optimization of relay deployment,channel allocation,and relay as-signment for UAVs-aided D2D networks[J].IEEEACM Transactions on Networking, 2020, 28(2):804-817 [12]PAN H, LIU Y, SUN G, et al.Resource scheduling for UAVs-aided D2D networks: A multi-objective optimi-zation approach[J]. IEEE Transactions on Wireless Communications, 2023. [13]YU Z, GONG Y, GONG S, et al.Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J].IEEE Internet of Things Journal, 2020, 7(4):3147-3159 [14]PAN W, LV N, HOU B, et al.Resource Allocation and Outage Probability Optimization Method for Multi-Hop UAV Relay Network for Servicing Heterogene-ous Users[J]. IEEE Transactions on Network Science and Engineering, 2024. [15]YANG Z, BI S, ZHANG Y J A.Deployment optimiza-tion of dual-functional UAVs for integrated localiza-tion and communication[J].IEEE Transactions on Wireless Communications, 2023, 22(12):9672-9687 [16]LIU K, LIU Y, YI P, et al.Deployment and robust hybrid beamforming for UAV MmWave communica-tions[J].IEEE Transactions on Communications, 2023, 71(5):3073-3086 [17]ZHANG X, ZHANG H, SUN K, et al.Human-Centric Irregular RIS-Assisted Multi-UAV Networks With Re-source Allocation and Reflecting Design for Metaverse[J]. IEEE Journal on Selected Areas in Communications, 2024. [18]YUAN X, HU Y, ZHANG J, et al.Joint user schedul-ing and UAV trajectory design on completion time minimization for UAV-aided data collection[J].IEEE Transactions on Wireless Communications, 2022, 22(6):3884-3898 [19]WANG Y, CHEN M, PAN C, et al.Joint optimization of UAV trajectory and sensor uploading powers for UAV-assisted data collection in wireless sensor net-works[J].IEEE Internet of Things Journal, 2021, 9(13):11214-11226 [20]CHAI R, GAO Y, SUN R, et al.Time-Oriented Joint Clustering and UAV Trajectory Planning in UAV-Assisted WSNs: Leveraging Parallel Transmission and Variable Velocity Scheme[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. [21]付澍, 杨祥月, 张海君, 等.物联网数据收集中无人机路径智能规划[J].通信学报, 2021, 42(02):124-133 [22]FU S, YANG X Y, ZHANG H J, et al.UAV path intel-ligent planning in IoT data collection[J].Journal on Communications, 2021, 42(02):124-133 [23]ZHU B, BEDEER E, NGUYEN H H, et al.UAV tra-jectory planning for AoI-minimal data collection in UAV-aided IoT networks by transformer[J].IEEE Transactions on Wireless Communications, 2022, 22(2):1343-1358 [24]SHEN L, WANG N, ZHANG D, et al.Energy-aware dynamic trajectory planning for UAV-enabled data collection in mMTC networks[J].IEEE Transactions on Green Communications and Networking, 2022, 6(4):1957-1971 [25]LIU K, ZHENG J.UAV Trajectory Planning with In-terference Awareness for Time-Constrained Data Col-lection[C]//GLOBECOM 2023-2023 IEEE Global Communications Conference. IEEE, 2023: 1926-1931. [26]MA Y, TANG Y, MAO Z, et al.Energy-Efficient 3D Trajectory Optimization for UAV-Aided Wireless Sen-sor Networks[C]//GLOBECOM 2023-2023 IEEE Global Communications Conference. IEEE, 2023: 6591-6596. [27]LIU J, YANG F, WANG X, et al.Joint Optimization of Charging Station Placement and UAV Trajectory for Fresh Data Collection[J]. IEEE Internet of Things Journal, 2024. [28]LIU B, WAN Y, ZHOU F, et al.Resource allocation and trajectory design for MISO UAV-assisted MEC networks[J].IEEE Transactions on Vehicular Tech-nology, 2022, 71(5):4933-4948 [29]WANG D, TIAN J, ZHANG H, et al.Task offloading and trajectory scheduling for UAV-enabled MEC net-works: An optimal transport theory perspective[J].IEEE Wireless Communications Letters, 2021, 11(1):150-154 [30]YE W, ZHAO L, ZHOU J, et al.Energy-Efficient Flight Scheduling and Trajectory Optimization in UAV-Aided Edge Computing Networks[J]. IEEE Transactions on Network Science and Engineering, 2024. [31]ZHAO N, YE Z, PEI Y, et al.Multi-agent deep rein-forcement learning for task offloading in UAV-assisted mobile edge computing[J].IEEE Transactions on Wireless Communications, 2022, 21(9):6949-6960 [32]LI C, GAN Y, ZHANG Y, et al.A cooperative compu-tation offloading strategy with on-demand deploy-ment of multi-UAVs in UAV-aided mobile edge com-puting[J]. IEEE Transactions on Network and Service Management, 2023. [33]LIAO Z, YUAN C, ZHENG B, et al.An Adap-tive Deployment Scheme of Unmanned Aerial Vehi-cles in Dynamic Vehicle Networking for Complete Offloading[J]. IEEE Internet of Things Journal, 2024. [34]CHAI S, LAU V K N.Multi-UAV trajectory and pow-er optimization for cached UAV wireless networks with energy and content recharging-demand driven deep learning approach[J].IEEE Journal on Selected Areas in Communications, 2021, 39(10):3208-3224 [35]SONG S, CHOI M, KO D E, et al.Multi-UAV trajec-tory optimization considering collisions in FSO com-munication networks[J].IEEE Journal on Selected Areas in Communications, 2021, 39(11):3378-3394 [36]YAN C, FU L, ZHANG J, et al.A comprehensive survey on UAV communication channel modeling[J]. IEEE Access, 2019, 7: 107769-107792. [37]AL-HOURANI A, KANDEEPAN S, Lardner S.Opti-mal LAP altitude for maximum coverage[J].IEEE Wireless Communications Letters, 2014, 3(6):569-572 [38]MOZAFFARI M, SAAD W, BENNIS M, et al.A tuto-rial on UAVs for wireless networks: Applications,challenges,and open problems[J].IEEE communica-tions surveys & tutorials, 2019, 21(3):2334-2360 [39]CAO H, YU G, CHEN Z.Cooperative task offloading and dispatching optimization for large-scale users via UAVs and HAP[C]//2023 IEEE Wireless Communica-tions and Networking Conference (WCNC). IEEE, 2023: 1-6. [40]GONG S, WANG M, GU B, et al.Bayesian optimiza-tion enhanced deep reinforcement learning for trajec-tory planning and network formation in multi-UAV networks[J].IEEE Transactions on Vehicular Tech-nology, 2023, 72(8):10933-10948 [41]HU W, YU Y, LIU S, et al.Multi-UAV coverage path planning: A distributed online cooperation method[J].IEEE Transactions on Vehicular Technology, 2023, 72(9):11727-11740 [42]TSAI H C, HONG Y W P, SHEU J P.Completion time minimization for UAV-enabled surveillance over mul-tiple restricted regions[J].IEEE Transactions on Mo-bile Computing, 2022, 22(12):6907-6920 [43]TANG G, DU P, LEI H, et al.Trajectory design and communication resources allocation for wireless powered secure UAV communication systems[J].IEEE Systems Journal, 2021, 16(4):6300-6308 [44]HU X, WONG K K, YANG K, et al.UAV-assisted relaying and edge computing: Scheduling and trajec-tory optimization[J].IEEE Transactions on Wireless Communications, 2019, 18(10):4738-4752 [45]QIAN Y, WANG F, LI J, et al.User association and path planning for UAV-aided mobile edge computing with energy restriction[J].IEEE Wireless Communica-tions Letters, 2019, 8(5):1312-1315 [46]DENG X, LI J, GUAN P, et al.Energy-efficient UAV-aided target tracking systems based on edge compu-ting[J].IEEE Internet of Things Journal, 2021, 9(3):2207-2214 [47]MA Y, TANG Y, MAO Z, et al.Energy-Efficient 3D Trajectory Optimization for UAV-Aided Wireless Sen-sor Networks[C]//GLOBECOM 2023-2023 IEEE Global Communications Conference. IEEE, 2023: 6591-6596. [48]YUAN X, JIANG H, HU Y, et al.Joint analog beam-forming and trajectory planning for energy-efficient UAV-enabled nonlinear wireless power transfer[J].IEEE Journal on Selected Areas in Communications, 2022, 40(10):2914-2929 [49]XIA W, ZHU Y, DE SIMONE L, et al.Multiagent col-laborative learning for uav enabled wireless net-works[J].IEEE Journal on Selected Areas in Commu-nications, 2022, 40(9):2630-2642 [50]WU T, LIU J, LIU J, et al.A novel AI-based frame-work for AoI-optimal trajectory planning in UAV-assisted wireless sensor networks[J].IEEE Transac-tions on Wireless Communications, 2021, 21(4):2462-2475 [51]SUN H, ZHOU Y, TANG J, et al.Average AoI-minimal trajectory design for UAV-assisted IoT data collection system: A safe-TD3 approach[J]. IEEE Wireless Communications Letters, 2023. [52]CHEN B, LIU D, ZHANG J, et al.Learning-Aided UAV-Cooperation Reduces the Age-of-Information in Wireless Networks[J]. IEEE Communications Letters, 2024. [53]SUN C, XINXUAN X, ZHAI Z, et al.Max–Min Fair 3D Trajectory Design and Transmission Scheduling for Solar-Powered Fixed-Wing UAV-Assisted Data Collection[J].IEEE Transactions on Wireless Com-munications, 2023, 22(12):8650-8665 [54]DIAO X, ZHENG J, CAI Y, et al.Fair data allocation and trajectory optimization for UAV-assisted mobile edge computing[J].IEEE Communications Letters, 2019, 23(12):2357-2361 [55]YUHANG R, LIANG Z.An Adaptive evolutionary multi-objective estimation of distribution algorithm and its application to multi-UAV path planning[J]. IEEE Access, 2023, 11: 50038-50051. [56]LI J, SUN G, DUAN L, et al.Multi-objective optimi-zation for UAV swarm-assisted IoT with virtual an-tenna arrays[J]. IEEE Transactions on Mobile Compu-ting, 2023. [57]WAN Y, ZHONG Y, MA A, et al.An accurate UAV 3-D path planning method for disaster emergency re-sponse based on an improved multiobjective swarm intelligence algorithm[J].IEEE Transactions on Cy-bernetics, 2022, 53(4):2658-2671 [58]SHAMI T M, EL-SALEH A A, ALSWAITTI M, et al.Particle swarm optimization: A comprehensive sur-vey[J]. Ieee Access, 2022, 10: 10031-10061. [59]FU Y, DING M, ZHOU C, et al.Route planning for unmanned aerial vehicle (UAV) on the sea using hy-brid differential evolution and quantum-behaved par-ticle swarm optimization[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(6):1451-1465 [60]SHAMI T M, EL-SALEH A A, ALSWAITTI M, et al.Particle swarm optimization: A comprehensive sur-vey[J]. Ieee Access, 2022, 10: 10031-10061. [61]WU Y, LIANG T, GOU J, et al.Heterogeneous mis-sion planning for multiple uav formations via me-taheuristic algorithms[J].IEEE Transactions on Aero-space and Electronic Systems, 2023, 59(4):3924-3940 [62]ZHENG J, DING M, SUN L, et al.Distributed sto-chastic algorithm based on enhanced genetic algo-rithm for path planning of multi-UAV cooperative ar-ea search[J].IEEE Transactions on Intelligent Trans-portation Systems, 2023, 24(8):8290-8303 [63]WU L, SUN Q, XU H, et al.Design of hybrid simu-lated annealing algorithm for UAV scheduling based on coordinated task scheduling[C]//2021 40th Chi-nese Control Conference (CCC). IEEE, 2021: 1669-1674. [64]MA M, WU J, SHI Y, et al.Chaotic random opposi-tion-based learning and Cauchy mutation improved moth-flame optimization algorithm for intelligent route planning of multiple UAVs[J]. IEEE access, 2022, 10: 49385-49397. [65]DEWANGAN R K, SHUKLA A, GODFREY W W.Three dimensional path planning using Grey wolf op-timizer for UAVs[J]. Applied Intelligence, 2019, 49: 2201-2217. [66]张国印, 孟想, 李思照.基于果蝇优化算法的无人机航路规划方法[J].无线电通信技术, 2021, 47(03):344-352 [67]ZHANG G Y, MENG X, LI S Z.UAV path planning method based on fruit fly optimization algorithm[J].Radio Communications Technology, 2021, 47(03):344-352 [68]DUAN H, ZHAO J, DENG Y, et al.Dynamic discrete pigeon-inspired optimization for multi-UAV coopera-tive search-attack mission planning[J].IEEE Transac-tions on Aerospace and Electronic Systems, 2020, 57(1):706-720 [69]WU Y, LIANG T, GOU J, et al.Heterogeneous mis-sion planning for multiple uav formations via me-taheuristic algorithms[J].IEEE Transactions on Aero-space and Electronic Systems, 2023, 59(4):3924-3940 [70]SHI L, XU S.UAV path planning with QoS constraint in device-to-device 5G networks using particle swarm optimization[J]. Ieee Access, 2020, 8: 137884-137896. [71]ALFATTANI S, JAAFAR W, YANIKOMEROGLU H, et al.Multi-UAV data collection framework for wire-less sensor networks[C]//2019 IEEE Global Commu-nications Conference (GLOBECOM). IEEE, 2019: 1-6. [72]SHEN L, WANG N, ZHU Z, et al.UAV-enabled data collection for mMTC networks: AEM modeling and energy-efficient trajectory design[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-6. [73]JOSEPH J, RADMANESH M, SADAT M N, et al.UAV path planning for data ferrying with communi-cation constraints[C]//2020 IEEE 17th Annual Con-sumer Communications & Networking Conference (CCNC). IEEE, 2020: 1-9. [74]ROBERGE V, TARBOUCHI M, LABONTé G.Com-parison of parallel genetic algorithm and particle swarm optimization for real-time UAV path plan-ning[J].IEEE Transactions on industrial informatics, 2012, 9(1):132-141 [75]ZENG Y, ZHANG R.Energy-efficient UAV commu-nication with trajectory optimization[J].IEEE Trans-actions on wireless communications, 2017, 16(6):3747-3760 [76]WU Q, ZENG Y, ZHANG R.Joint trajectory and communication design for multi-UAV enabled wire-less networks[J].IEEE Transactions on Wireless Communications, 2018, 17(3):2109-2121 [77]HU Q, CAI Y, LIU A, et al.Low-complexity joint resource allocation and trajectory design for UAV-aided relay networks with the segmented ray-tracing channel model[J].IEEE Transactions on Wireless Communications, 2020, 19(9):6179-6195 [78]WANG H, WANG J, DING G, et al.Completion time minimization for turning angle-constrained UAV-to-UAV communications[J].IEEE Transactions on Ve-hicular Technology, 2020, 69(4):4569-4574 [79]ZHANG C, LU Y.Study on artificial intelligence: The state of the art and future prospects[J]. Journal of In-dustrial Information Integration, 2021, 23: 100224. [80]ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al.Deep reinforcement learning: A brief survey[J].IEEE Signal Processing Magazine, 2017, 34(6):26-38 [81]LUONG N C, HOANG D T, GONG S, et al.Applica-tions of deep reinforcement learning in communica-tions and networking: A survey[J].IEEE communica-tions surveys & tutorials, 2019, 21(4):3133-3174 [82]HE H, YUAN W, CHEN S, et al.Deep Reinforcement Learning Based Distributed 3D UAV Trajectory De-sign[J]. IEEE Transactions on Communications, 2024. [83]MAO Q, HU F, HAO Q.Deep learning for intelligent wireless networks: A comprehensive survey[J].IEEE Communications Surveys & Tutorials, 2018, 20(4):2595-2621 [84]HUANG Z, XU X.DQN-based relay deployment and trajectory planning in consensus-based multi-UAVs tracking network[C]//2021 IEEE International Con-ference on Communications Workshops (ICC Work-shops). IEEE, 2021: 1-7. [85]DENG D, WANG C, WANG W.Joint air-to-ground scheduling in UAV-aided vehicular communication: A DRL approach with partial observations[J].IEEE Communications Letters, 2022, 26(7):1628-1632 [86]LIU B, LIU C, PENG M.Dynamic Cache Placement and Trajectory Design for UAV-Assisted Networks: A Two-Timescale Deep Reinforcement Learning Ap-proach[J]. IEEE Transactions on Vehicular Technolo-gy, 2023. [87]ZHU B, BEDEER E, NGUYEN H H, et al.UAV tra-jectory planning in wireless sensor networks for ener-gy consumption minimization by deep reinforcement learning[J].IEEE Transactions on Vehicular Technol-ogy, 2021, 70(9):9540-9554 [88]BRESSON X, LAURENT T. The transformer network for the traveling salesman problem[J]. arXiv prep.[J].rXiv:2103.03012, 2021., rint, :- [89]CHEN J, WU Q, XU Y, et al.Joint task assignment and spectrum allocation in heterogeneous UAV com-munication networks: A coalition formation game-theoretic approach[J].IEEE Transactions on Wireless Communications, 2020, 20(1):440-452 [90]CHEN J, WU Q, XU Y, et al.Joint task assignment and spectrum allocation in heterogeneous UAV com-munication networks: A coalition formation game-theoretic approach[J].IEEE Transactions on Wireless Communications, 2020, 20(1):440-452 [91]WU H, LI M, GAO Q, et al.Eavesdropping and anti-eavesdropping game in UAV wiretap system: A dif-ferential game approach[J].IEEE Transactions on Wireless Communications, 2022, 21(11):9906-9920 [92]CHEN G, ZHAI X B, LI C.Joint optimization of tra-jectory and user association via reinforcement learn-ing for UAV-aided data collection in wireless net-works[J].IEEE Transactions on Wireless Communica-tions, 2022, 22(5):3128-3143 [93]YU Y, LIU X, LEUNG V C M.Fair downlink com-munications for RIS-UAV enabled mobile vehicles[J].IEEE Wireless Communications Letters, 2022, 11(5):1042-1046 [94]YE J, QIAO J, KAMMOUN A, et al.Nonterrestrial communications assisted by reconfigurable intelligent surfaces[J].Proceedings of the IEEE, 2022, 110(9):1423-1465 [95]BANSAL A, AGRAWAL N, SINGH K, et al.RIS se-lection scheme for UAV-based multi-RIS-aided multi-user downlink network with imperfect and outdated CSI[J].IEEE Transactions on Communications, 2023, 71(8):4650-4664 [96]WU Z, LI X, CAI Y, et al.Joint Trajectory and Re-source Allocation Design for RIS-Assisted UAV-Enabled ISAC Systems[J]. IEEE Wireless Communi-cations Letters, 2024. [97]ZHANG H, HUANG M, ZHOU H, et al.Capacity maximization in RIS-UAV networks: a DDQN-based trajectory and phase shift optimization approach[J].IEEE Transactions on Wireless Communications, 2022, 22(4):2583-2591 [98]CHENG X, HUANG Z, BAI L.Channel nonstation-arity and consistency for beyond 5G and 6G: A sur-vey[J].IEEE Communications Surveys & Tutorials, 2022, 24(3):1634-1669 [99]WU J, YUAN W, HANZO L.When UAVs meet ISAC: Real-time trajectory design for secure communica-tions[J]. IEEE Transactions on Vehicular Technology, 2023. [100]PAN Y, LI R, DA X, et al.Cooperative Trajectory Planning and Resource Allocation for UAV-enabled Integrated Sensing and Communication Systems[J]. IEEE Transactions on Vehicular Technology, 2023. [101]DENG C, FANG X, WANG X.Beamforming design and trajectory optimization for UAV-empowered adaptable integrated sensing and communication[J].IEEE Transactions on Wireless Communications, 2023, 22(11):8512-8526 [102]KANG H, CHANG X, MI?I? J, et al.Cooperative UAV resource allocation and task offloading in hier-archical aerial computing systems: A MAPPO-based approach[J].IEEE Internet of Things Journal, 2023, 10(12):10497-10509 [103]ARANI A H, HU P, ZHU Y. HAPS-UAV-Enabled Het-erogeneous Networks: A Deep Reinforcement Learn-ing Approach. arXiv 2023[J]. arXiv prep.[J].rXiv:2303.12883., rint, :- [104]JAVED S, ALOUINI M S, DING Z.An Interdiscipli-nary Approach to Optimal Communication and Flight Operation of High-Altitude Long-Endurance Plat-forms[J]. IEEE Transactions on Aerospace and Elec-tronic Systems, 2023. [105]NGUYEN M D, LE L B, Girard A.Integrated Compu-tation Offloading, UAV Trajectory Control, Edge-Cloud and Radio Resource Allocation in SAGIN[J]. IEEE Transactions on Cloud Computing, 2023. [106]YU J, LIU X, GAO Y, et al.D channel tracking for UAV-satellite communications in space-air-ground in-tegrated networks[J].IEEE Journal on Selected Areas in Communications, 2020, 38(12):2810-2823 [107]HU Z, ZENG F, XIAO Z, et al.Joint resources alloca-tion and 3D trajectory optimization for UAV-enabled space-air-ground integrated networks[J].IEEE Trans-actions on Vehicular Technology, 2023, 72(11):14214-14229
文章导航

/