收稿日期:
2024-09-30
修回日期:
2024-10-14
接受日期:
2024-11-05
出版日期:
2024-11-26
发布日期:
2024-11-20
通讯作者:
张海君
E-mail:zhanghaijun@ustb.edu.cn
基金资助:
Haijun ZHANG1(), Qingyue XIA1, Xu MA1, Chao REN1, Yang LU2
Received:
2024-09-30
Revised:
2024-10-14
Accepted:
2024-11-05
Online:
2024-11-26
Published:
2024-11-20
Contact:
Haijun ZHANG
E-mail:zhanghaijun@ustb.edu.cn
Supported by:
摘要:
随着6G标准的迅速演进,无人机在低空通信网络中的应用成为研究热点。针对无人机在低空通信场景下的部署优化问题,开展了无人机的静态与动态部署策略研究,并对相关的部署优化算法进行了分析。首先,阐述了无人机部署的3种基本策略,即静态部署、单无人机动态部署和多无人机动态部署,探讨了它们在不同应用场景下的优势。其次,详细讨论了无人机部署 优化模型,从低空通信网络的信道模型、约束条件和目标函数3个方面分别进行阐述。在此基础上,系统地对现有的无人机部署优化算法进行了对比,从多角度分析了各类算法的优势与不足。最后,展望了未来无人机部署优化的研究方向,并结合智能反射面、通感一体化等前沿技术进行了分析,旨在为相关领域的研究人员提供参考和借鉴。
中图分类号:
张海君, 夏清悦, 马旭, 任超, 陆阳. 6G低空通信场景下无人机部署优化综述[J]. 航空学报, 2025, 46(11): 531296.
Haijun ZHANG, Qingyue XIA, Xu MA, Chao REN, Yang LU. A review of unmanned aerial vehicles deployment optimization in 6G low-altitude communication scenarios[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531296.
表2
无人机部署优化算法对比
算法类型 | 适用的无人机部署场景 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
智能搜索算法 | 适用于中等规模问题 | 可找到全局最优解或近似解,适用于多类应用场景 | 对于大规模问题计算成本高,易陷入局部最优 | [ |
凸优化 | 适用于中等规模问题 | 可处理具有凸约束的优化问题,可以得到全局最优解 | 对于非凸问题不适用,大规模问题计算成本高 | [ |
深度强化学习 | 适合大规模和复杂环境问题,如无人机自主部署 | 可处理高维状态空间和连续动作空间,具有较好的泛化能力 | 需要大量数据进行训练,对环境的动态变化敏感 | [ |
多智能体深度强化学习 | 适用于多无人机协同任务和动态部署环境 | 在分布式决策和协同优化上具有优势,适合动态环境下的无人机协作部署 | 策略复杂,易受环境不稳定性影响,训练开销大 | [ |
图论 | 适合离散和组合优化问题 | 算法成熟,在特定环境下求解迅速 | 对于复杂场景,其轨迹难以转化为图 | [ |
博弈论 | 取决于无人机博弈的复杂性和参与者数量 | 有利于解决多无人机协作问题,确定纳什均衡策略解 | 对于非零和博弈或不完全信息博弈可能难以找到解 | [ |
[1] | 易芝玲, 王森, 韩双锋, 等. 从5G到6G的思考: 需求、挑战与技术发展趋势[J]. 北京邮电大学学报, 2020, 43(2): 1-9. |
YI Z L, WANG S, HAN S F, et al. From 5G to 6G: Requirements, challenges and technical trends[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(2): 1-9 (in Chinese). | |
[2] | 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781-789. |
CHEN X Y, SHENG M, LI B, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781-789 (in Chinese). | |
[3] | GUPTA L, JAIN R, VASZKUN G. Survey of important issues in UAV communication networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1123-1152. |
[4] | VAEZI M, AZARI A, KHOSRAVIRAD S R, et al. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1117-1174. |
[5] | JAVED S, HASSAN A, AHMAD R, et al. State-of-the-art and future research challenges in UAV swarms[J]. IEEE Internet of Things Journal, 2024, 11(11): 19023-19045. |
[6] | MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334-2360. |
[7] | CHEN R R, SUN Y J, LIANG L P, et al. Joint power allocation and placement scheme for UAV-assisted IoT with QoS guarantee[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 1066-1071. |
[8] | NGUYEN H T, TUAN H D, DUONG T Q, et al. Joint D2D assignment, bandwidth and power allocation in cognitive UAV-enabled networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 1084-1095. |
[9] | ZHONG X J, GUO Y, LI N, et al. Joint optimization of relay deployment, channel allocation, and relay assignment for UAVs-aided D2D networks[J]. IEEE/ACM Transactions on Networking, 2020, 28(2): 804-817. |
[10] | PAN H Y, LIU Y H, SUN G, et al. Resource scheduling for UAVs-aided D2D networks: A multi-objective optimization approach[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 4691-4708. |
[11] | YU Z, GONG Y M, GONG S M, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147-3159. |
[12] | MEI W D, WU Q Q, ZHANG R. Cellular-connected UAV: Uplink association, power control and interference coordination[C]∥2018 IEEE Global Communications Conference (GLOBECOM). Piscataway: IEEE Press, 2018. |
[13] | ZHOU L Y, CHEN X H, HONG M Y, et al. Efficient resource allocation for multi-UAV communication against adjacent and co-channel interference[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10222-10235. |
[14] | LU J, LI J F, YU F R, et al. UAV-assisted heterogeneous cloud radio access network with comprehensive interference management[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 843-859. |
[15] | YANG P, XI X, QUEK T Q S, et al. Power control for a URLLC-enabled UAV system incorporated with DNN-based channel estimation[J]. IEEE Wireless Communications Letters, 2021, 10(5): 1018-1022. |
[16] | LIN N, LIU Y H, ZHAO L, et al. An adaptive UAV deployment scheme for emergency networking[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2383-2398. |
[17] | PAN W, LV N, HOU B, et al. Resource allocation and outage probability optimization method for multi-hop UAV relay network for servicing heterogeneous users[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(3): 2769-2781. |
[18] | YANG Z Y, BI S Z, ZHANG Y A. Deployment optimization of dual-functional UAVs for integrated localization and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9672-9687. |
[19] | LIU K, LIU Y M, YI P F, et al. Deployment and robust hybrid beamforming for UAV MmWave communications[J]. IEEE Transactions on Communications, 2023, 71(5): 3073-3086. |
[20] | ZHANG X Q, ZHANG H J, SUN K, et al. Human-centric irregular RIS-assisted multi-UAV networks with resource allocation and reflecting design for metaverse[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(3): 603-615. |
[21] | YUAN X P, HU Y L, ZHANG J, et al. Joint user scheduling and UAV trajectory design on completion time minimization for UAV-aided data collection[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 3884-3898. |
[22] | WANG Y L, CHEN M, PAN C H, et al. Joint optimization of UAV trajectory and sensor uploading powers for UAV-assisted data collection in wireless sensor networks[J]. IEEE Internet of Things Journal, 2022, 9(13): 11214-11226. |
[23] | 付澍, 杨祥月, 张海君, 等. 物联网数据收集中无人机路径智能规划[J]. 通信学报, 2021, 42(2): 124-133. |
FU S, YANG X Y, ZHANG H J, et al. UAV path intelligent planning in IoT data collection[J]. Journal on Communications, 2021, 42(2): 124-133 (in Chinese). | |
[24] | ZHU B T, BEDEER E, NGUYEN H H, et al. UAV trajectory planning for AoI-minimal data collection in UAV-aided IoT networks by transformer[J]. IEEE Transactions on Wireless Communications, 2023, 22(2): 1343-1358. |
[25] | SHEN L F, WANG N, ZHANG D, et al. Energy-aware dynamic trajectory planning for UAV-enabled data collection in mMTC networks[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(4): 1957-1971. |
[26] | CHAI R, GAO Y F, SUN R J, et al. Time-oriented joint clustering and UAV trajectory planning in UAV-assisted WSNs: Leveraging parallel transmission and variable velocity scheme[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12092-12106. |
[27] | LIU K, ZHENG J. UAV trajectory planning with interference awareness for time-constrained data collection[C]∥GLOBECOM 2023-2023 IEEE Global Communications Conference. Piscataway: IEEE Press, 2023. |
[28] | MA Y, TANG Y Q, MAO Z J, et al. Energy-efficient 3D trajectory optimization for UAV-aided wireless sensor networks[C]∥GLOBECOM 2023-2023 IEEE Global Communications Conference. Piscataway: IEEE Press, 2023. |
[29] | LIU J, YANG F, WANG X J, et al. Joint optimization of charging station placement and UAV trajectory for fresh data collection[J]. IEEE Internet of Things Journal, 2024, 11(14): 25057-25073. |
[30] | LIU B Y, WAN Y Y, ZHOU F H, et al. Resource allocation and trajectory design for MISO UAV-assisted MEC networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 4933-4948. |
[31] | WANG D, TIAN J, ZHANG H X, et al. Task offloading and trajectory scheduling for UAV-enabled MEC networks: An optimal transport theory perspective[J]. IEEE Wireless Communications Letters, 2022, 11(1): 150-154. |
[32] | YE W D, ZHAO L, ZHOU J, et al. Energy-efficient flight scheduling and trajectory optimization in UAV-aided edge computing networks[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(5): 4591-4602. |
[33] | LI P M, XIE L F, YAO J P, et al. Cellular-connected UAV with adaptive air-to-ground interference cancellation and trajectory optimization[J]. IEEE Communications Letters, 2022, 26(6): 1368-1372. |
[34] | LIU K, ZHENG J. UAV trajectory planning with interference awareness in UAV-enabled time-constrained data collection systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2799-2815. |
[35] | ZHAO N, YE Z Y, PEI Y Y, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6949-6960. |
[36] | LI C L, GAN Y Z, ZHANG Y, et al. A cooperative computation offloading strategy with on-demand deployment of multi-UAVs in UAV-aided mobile edge computing[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2095-2110. |
[37] | LIAO Z F, YUAN C H, ZHENG B, et al. An adaptive deployment scheme of unmanned aerial vehicles in dynamic vehicle networking for complete offloading[J]. IEEE Internet of Things Journal, 2024, 11(13): 23509-23520. |
[38] | TARIQ Z U A, BACCOUR E, ERBAD A, et al. RL-based adaptive UAV swarm formation and clustering for secure 6G wireless communications in dynamic dense environments[J]. IEEE Access, 2024, 12: 125609-125628. |
[39] | DUAN X J, LIU H Y, TANG H, et al. A novel hybrid auction algorithm for multi-UAVs dynamic task assignment[J]. IEEE Access, 2019, 8: 86207-86222. |
[40] | CHAI S Q, LAU V K N. Multi-UAV trajectory and power optimization for cached UAV wireless networks with energy and content recharging-demand driven deep learning approach[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3208-3224. |
[41] | SONG S, CHOI M, KO D E, et al. Multi-UAV trajectory optimization considering collisions in FSO communication networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3378-3394. |
[42] | HU W J, YU Y, LIU S M, et al. Multi-UAV coverage path planning: A distributed online cooperation method[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11727-11740. |
[43] | SHAO X X, GONG Y J, ZHAN Z H, et al. Bipartite cooperative coevolution for energy-aware coverage path planning of UAVs[J]. IEEE Transactions on Artificial Intelligence, 2022, 3(1): 29-42. |
[44] | YAN C X, FU L G, ZHANG J K, et al. A comprehensive survey on UAV communication channel modeling[J]. IEEE Access, 2019, 7: 107769-107792. |
[45] | AL-HOURANI A, KANDEEPAN S, LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569-572. |
[46] | DING R, GAO F, SHEN X S. 3D UAV trajectory design and frequency band allocation for energy-efficient and fair communication: A deep reinforcement learning approach[J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 7796-7809. |
[47] | CAO H J, YU G H, CHEN Z G. Cooperative task offloading and dispatching optimization for large-scale users via UAVs and HAP[C]∥2023 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2023. |
[48] | GONG S M, WANG M, GU B, et al. Bayesian optimization enhanced deep reinforcement learning for trajectory planning and network formation in multi-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10933-10948. |
[49] | DAI C, ZHU K, HOSSAIN E. Multi-agent deep reinforcement learning for joint decoupled user association and trajectory design in full-duplex multi-UAV networks[J]. IEEE Transactions on Mobile Computing, 2022, 22(10): 6056-6070. |
[50] | TSAI H C, HONG Y P, SHEU J P. Completion time minimization for UAV-enabled surveillance over multiple restricted regions[J]. IEEE Transactions on Mobile Computing, 2023, 22(12): 6907-6920. |
[51] | TANG G F, DU P F, LEI H J, et al. Trajectory design and communication resources allocation for wireless powered secure UAV communication systems[J]. IEEE Systems Journal, 2022, 16(4): 6300-6308. |
[52] | HU X Y, WONG K K, YANG K, et al. UAV-assisted relaying and edge computing: Scheduling and trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4738-4752. |
[53] | QIAN Y W, WANG F F, LI J, et al. User association and path planning for UAV-aided mobile edge computing with energy restriction[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1312-1315. |
[54] | DENG X H, LI J, GUAN P Y, et al. Energy-efficient UAV-aided target tracking systems based on edge computing[J]. IEEE Internet of Things Journal, 2022, 9(3): 2207-2214. |
[55] | LIU Y, LIU S, LIU X, et al. Sensing fairness-based energy efficiency optimization for UAV enabled integrated sensing and communication[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1702-1706. |
[56] | YUAN X P, JIANG H, HU Y L, et al. Joint analog beamforming and trajectory planning for energy-efficient UAV-enabled nonlinear wireless power transfer[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 2914-2929. |
[57] | XIA W C, ZHU Y X, DE SIMONE L, et al. Multiagent collaborative learning for UAV enabled wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(9): 2630-2642. |
[58] | WU T H, LIU J F, LIU J, et al. A novel AI-based framework for AoI-optimal trajectory planning in UAV-assisted wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2462-2475. |
[59] | SUN H G, ZHOU Y, TANG J C, et al. Average AoI-minimal trajectory design for UAV-assisted IoT data collection system: A safe-TD3 approach[J]. IEEE Wireless Communications Letters, 2024, 13(2): 530-534. |
[60] | CHEN B Q, LIU D, ZHANG J L, et al. Learning-aided UAV-cooperation reduces the age-of-information in wireless networks[J]. IEEE Communications Letters, 2024, 28(5): 1053-1057. |
[61] | YANG G, QIAN Y W, REN K, et al. Covert wireless communications for augmented reality systems with dual cooperative UAVs[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(5): 1119-1130. |
[62] | ZHOU L, WU D, WEI X, et al. Seeing isn’t believing: QoE evaluation for privacy-aware users[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(7): 1656-1665. |
[63] | DU H Y, NIYATO D, XIE Y A, et al. Performance analysis and optimization for jammer-aided multiantenna UAV covert communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 2962-2979. |
[64] | LI Z, LIAO X M, SHI J, et al. MD-GAN-based UAV trajectory and power optimization for cognitive covert communications[J]. IEEE Internet of Things Journal, 2022, 9(12): 10187-10199. |
[65] | SUN C, XIONG X X, ZHAI Z Y, et al. Max-Min fair 3D trajectory design and transmission scheduling for solar-powered fixed-wing UAV-assisted data collection[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8650-8665. |
[66] | DIAO X B, ZHENG J C, CAI Y M, et al. Fair data allocation and trajectory optimization for UAV-assisted mobile edge computing[J]. IEEE Communications Letters, 2019, 23(12): 2357-2361. |
[67] | REN Y H, ZHANG L. An adaptive evolutionary multi-objective estimation of distribution algorithm and its application to multi-UAV path planning[J]. IEEE Access, 2023, 11: 50038-50051. |
[68] | LI J H, SUN G, DUAN L J, et al. Multi-objective optimization for UAV swarm-assisted IoT with virtual antenna arrays[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 4890-4907. |
[69] | WAN Y T, ZHONG Y F, MA A L, et al. An accurate UAV 3-D path planning method for disaster emergency response based on an improved multiobjective swarm intelligence algorithm[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2658-2671. |
[70] | SHAMI T M, EL-SALEH A A, ALSWAITTI M, et al. Particle swarm optimization: A comprehensive survey[J]. IEEE Access, 2022, 10: 10031-10061. |
[71] | FU Y G, DING M Y, ZHOU C P, et al. Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(6): 1451-1465. |
[72] | HARIS M, BHATTI D M S, NAM H. A fast-convergent hyperbolic tangent PSO algorithm for UAVs path planning[J]. IEEE Open Journal of Vehicular Technology, 2024, 5: 681-694. |
[73] | YAN F, CHU J, HU J, et al. Cooperative task allocation with simultaneous arrival and resource constraint for multi-UAV using a genetic algorithm[J]. Expert Systems with Applications, 2024, 245: 123023. |
[74] | ZHENG J B, DING M H, SUN L, et al. Distributed stochastic algorithm based on enhanced genetic algorithm for path planning of multi-UAV cooperative area search[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8290-8303. |
[75] | WU L J, SUN Q, XU H T, et al. Design of hybrid simulated annealing algorithm for UAV scheduling based on coordinated task scheduling[C]∥2021 40th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2021. |
[76] | MA M X, WU J, SHI Y, et al. Chaotic random opposition-based learning and cauchy mutation improved moth-flame optimization algorithm for intelligent route planning of multiple UAVs[J]. IEEE Access, 2022, 10: 49385-49397. |
[77] | DEWANGAN R K, SHUKLA A, GODFREY W W. Three dimensional path planning using grey wolf optimizer for UAVs[J]. Applied Intelligence, 2019, 49(6): 2201-2217. |
[78] | 张国印, 孟想, 李思照. 基于果蝇优化算法的无人机航路规划方法[J]. 无线电通信技术, 2021, 47(3): 344-352. |
ZHANG G Y, MENG X, LI S Z. UAV path planning method based on fruit fly optimization algorithm[J]. Radio Communications Technology, 2021, 47(3): 344-352 (in Chinese). | |
[79] | DUAN H B, ZHAO J X, DENG Y M, et al. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 706-720. |
[80] | WU Y, LIANG T J, GOU J Z, et al. Heterogeneous mission planning for multiple UAV formations via metaheuristic algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3924-3940. |
[81] | SHI L, XU S K. UAV path planning with QoS constraint in device-to-device 5G networks using particle swarm optimization[J]. IEEE Access, 2020, 8: 137884-137896. |
[82] | ALFATTANI S, JAAFAR W, YANIKOMEROGLU H, et al. Multi-UAV data collection framework for wireless sensor networks[C]∥2019 IEEE Global Communications Conference (GLOBECOM). Piscataway: IEEE Press, 2019. |
[83] | SHEN L F, WANG N, ZHU Z Y, et al. UAV-enabled data collection for mMTC networks: AEM modeling and energy-efficient trajectory design[C]∥ICC 2020-2020 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2020. |
[84] | JOSEPH J, RADMANESH M, SADAT M N, et al. UAV path planning for data ferrying with communication constraints[C]∥2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC). Piscataway: IEEE Press, 2020. |
[85] | ROBERGE V, TARBOUCHI M, LABONTE G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 132-141. |
[86] | ZENG Y, ZHANG R. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747-3760. |
[87] | WU Q Q, ZENG Y, ZHANG R. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109-2121. |
[88] | HU Q Y, CAI Y L, LIU A, et al. Low-complexity joint resource allocation and trajectory design for UAV-aided relay networks with the segmented ray-tracing channel model[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 6179-6195. |
[89] | WANG H C, WANG J L, DING G R, et al. Completion time minimization for turning angle-constrained UAV-to-UAV communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4569-4574. |
[90] | ZHANG C M, LU Y. Study on artificial intelligence: The state of the art and future prospects[J]. Journal of Industrial Information Integration, 2021, 23: 100224. |
[91] | ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. |
[92] | LUONG N C, HOANG D T, GONG S M, et al. Applications of deep reinforcement learning in communications and networking: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3133-3174. |
[93] | HE H S, YUAN W K, CHEN S W, et al. Deep reinforcement learning-based distributed 3D UAV trajectory design[J]. IEEE Transactions on Communications, 2024, 72(6): 3736-3751. |
[94] | MAO Q, HU F, HAO Q. Deep learning for intelligent wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2595-2621. |
[95] | HUANG Z H, XU X D. DQN-based relay deployment and trajectory planning in consensus-based multi-UAVs tracking network[C]∥2021 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway: IEEE Press, 2021. |
[96] | DENG D H, WANG C W, WANG W D. Joint air-to-ground scheduling in UAV-aided vehicular communication: a DRL approach with partial observations[J]. IEEE Communications Letters, 2022, 26(7): 1628-1632. |
[97] | LIU B H, LIU C X, PENG M G. Dynamic cache placement and trajectory design for UAV-assisted networks: a two-timescale deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5516-5530. |
[98] | 孙彧, 曹雷, 陈希亮, 等. 多智能体深度强化学习研究综述[J]. 计算机工程与应用, 2020, 56(5): 13-24. |
SUN Y, CAO L, CHEN X L, et al. Overview of multi-agent deep reinforcement learning[J]. Computer Engineering and Applications, 2020, 56(5): 13-24 (in Chinese). | |
[99] | XIAO Y, SONG Y Q, LIU J. Collaborative multi-agent deep reinforcement learning for energy-efficient resource allocation in heterogeneous mobile edge computing networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 6653-6668. |
[100] | PI Y, ZHANG W, ZHANG Y, et al. Applications of multi-agent deep reinforcement learning communication in network management: A survey[DB/OL]. arXiv preprint: 2407.17030,2024. |
[101] | OUBBATI O S, LAKAS A, GUIZANI M. Multiagent deep reinforcement learning for wireless-powered UAV networks[J]. IEEE Internet of Things Journal, 2022, 9(17): 16044-16059. |
[102] | BAI C C, YAN P, PIAO H Y, et al. Learning-based multi-UAV flocking control with limited visual field and instinctive repulsion[J]. IEEE Transactions on Cybernetics, 2024, 54(1): 462-475. |
[103] | DENG L Y, GONG W, LIWANG M H, et al. Towards intelligent mobile crowdsensing with task state information sharing over edge-assisted UAV networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 11773-11788. |
[104] | ZHANG Y, ZHUANG Z R, GAO F F, et al. Multi-agent deep reinforcement learning for secure UAV communications[C]∥2020 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2020. |
[105] | ZHANG Y, MOU Z Y, GAO F F, et al. UAV-enabled secure communications by multi-agent deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11599-11611. |
[106] | ZHU B T, BEDEER E, NGUYEN H H, et al. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9540-9554. |
[107] | BRESSON X, LAURENT T. The transformer network for the traveling salesman problem[DB/OL]. arXiv preprint: 2103.03012, 2021. |
[108] | LONG H, DUAN H. Cooperative mission planning based on game theory for UAVs and USVs heterogeneous system in dynamic scenario[J]. Aircraft Engineering and Aerospace Technology, 2024, 96(9): 1128-1138. |
[109] | CHEN J X, WU Q H, XU Y H, et al. Joint task assignment and spectrum allocation in heterogeneous UAV communication networks: A coalition formation game-theoretic approach[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 440-452. |
[110] | WU H C, LI M, GAO Q Y, et al. Eavesdropping and anti-eavesdropping game in UAV wiretap system: A differential game approach[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9906-9920. |
[111] | CHEN G, ZHAI X B, LI C D. Joint optimization of trajectory and user association via reinforcement learning for UAV-aided data collection in wireless networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3128-3143. |
[112] | YU Y F, LIU X, LEUNG V C M. Fair downlink communications for RIS-UAV enabled mobile vehicles[J]. IEEE Wireless Communications Letters, 2022, 11(5): 1042-1046. |
[113] | YE J, QIAO J P, KAMMOUN A, et al. Nonterrestrial communications assisted by reconfigurable intelligent surfaces[J]. Proceedings of the IEEE, 2022, 110(9): 1423-1465. |
[114] | BANSAL A, AGRAWAL N, SINGH K, et al. RIS selection scheme for UAV-based multi-RIS-aided multiuser downlink network with imperfect and outdated CSI[J]. IEEE Transactions on Communications, 2023, 71(8): 4650-4664. |
[115] | WU Z Q, LI X H, CAI Y X, et al. Joint trajectory and resource allocation design for RIS-assisted UAV-enabled ISAC systems[J]. IEEE Wireless Communications Letters, 2024, 13(5): 1384-1388. |
[116] | ZHANG H J, HUANG M L, ZHOU H, et al. Capacity maximization in RIS-UAV networks: A DDQN-based trajectory and phase shift optimization approach[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2583-2591. |
[117] | BALASUBRAMANIAM A, GUL M J J, MENON V G, et al. Blockchain for intelligent transport system[J]. IETE Technical Review, 2021, 38(4): 438-449. |
[118] | AGGARWAL S, KUMAR N, TANWAR S. Blockchain-envisioned UAV communication using 6G networks: Open issues, use cases, and future directions[J]. IEEE Internet of Things Journal, 2021, 8(7): 5416-5441. |
[119] | CHENG X, HUANG Z W, BAI L. Channel nonstationarity and consistency for beyond 5G and 6G: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(3): 1634-1669. |
[120] | WU J, YUAN W J, HANZO L. When UAVs meet ISAC: Real-time trajectory design for secure communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16766-16771. |
[121] | PAN Y, LI R G, DA X Y, et al. Cooperative trajectory planning and resource allocation for UAV-enabled integrated sensing and communication systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6502-6516. |
[122] | DENG C L, FANG X M, WANG X B. Beamforming design and trajectory optimization for UAV-empowered adaptable integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8512-8526. |
[123] | KANG H Y, CHANG X L, MIŠIĆ J, et al. Cooperative UAV resource allocation and task offloading in hierarchical aerial computing systems: A MAPPO-based approach[J]. IEEE Internet of Things Journal, 2023, 10(12): 10497-10509. |
[124] | ARANI A H, HU P, ZHU Y Y. HAPS-UAV-enabled heterogeneous networks: A deep reinforcement learning approach[DB/OL]. arXiv preprint: 2303.12883, 2023. |
[125] | JAVED S, ALOUINI M S, DING Z G. An interdisciplinary approach to optimal communication and flight operation of high-altitude long-endurance platforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 8327-8341. |
[126] | NGUYEN M D, LE L B, GIRARD A. Integrated computation offloading, UAV trajectory control, edge-cloud and radio resource allocation in SAGIN[J]. IEEE Transactions on Cloud Computing, 2024, 12(1): 100-115. |
[127] | YU J D, LIU X L, GAO Y, et al. 3D channel tracking for UAV-satellite communications in space-air-ground integrated networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2810-2823. |
[128] | HU Z Z, ZENG F Z, XIAO Z, et al. Joint resources allocation and 3D trajectory optimization for UAV-enabled space-air-ground integrated networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 14214-14229. |
[1] | 虞翔宇, 李文, 严杰, 梁世哲. 无人机液氢燃料电池热管理系统仿真研究[J]. 航空学报, 2025, 46(9): 630964-630964. |
[2] | 杨芃芊, 陈禹彤, 刘俊辉, 杨杰豪, 单家元, 孙士珺. 串列翼货运无人机大攻角气动与操稳特性[J]. 航空学报, 2025, 46(9): 131056-131056. |
[3] | 李荣祖, 刘莉, 杨盾. 基于多源域融合代理模型的氢能无人机优化设计[J]. 航空学报, 2025, 46(9): 630979-630979. |
[4] | 万开方, 吴志林, 武韫晖, 强皓植, 吴艺博, 李波. 拒止环境下基于深度强化学习的多无人机协同定位[J]. 航空学报, 2025, 46(8): 331024-331024. |
[5] | 姜凌峰, 李新凯, 张海, 李涵玮, 张宏立. 基于改进TD3算法的无人机动态环境无地图导航[J]. 航空学报, 2025, 46(8): 331035-331035. |
[6] | 向锦武, 马凯, 阚梓, 李道春, 郑可欣, 陈汉轩. 氢能源无人机关键技术研究进展[J]. 航空学报, 2025, 46(5): 531603-531603. |
[7] | 丁奇帅, 雷帮军, 吴正平. 基于孪生网络的轻量型无人机单目标跟踪算法[J]. 航空学报, 2025, 46(4): 330925-330925. |
[8] | 吴付杰, 王博文, 齐静雅, 曹铭智, 桑英俊, 李晟, 张玉珍, 陈钱, 左超. 机载多孔径全景图像合成技术研究进展[J]. 航空学报, 2025, 46(3): 630505-630505. |
[9] | 马诺, 卫社春, 孟军辉, 刘清洋, 雷宇声. 考虑减速伞作用的无人机内埋舱体分离流场特性与动力学[J]. 航空学报, 2025, 46(3): 130755-130755. |
[10] | 吴一全, 童康. 基于深度学习的无人机航拍图像小目标检测研究进展[J]. 航空学报, 2025, 46(3): 30848-030848. |
[11] | 屈若锟, 王致远, 刘晔璐, 李诚龙, 江波. 面向城市空中交通的无人机视觉定位技术[J]. 航空学报, 2025, 46(11): 531168-531168. |
[12] | 李坤, 布树辉, 李佳朋, 王俱博玺, 韩鹏程, 李霄翰, 李浩玮. 基于单目视觉与测距信息的无人机集群定位方法[J]. 航空学报, 2025, 46(11): 531281-531281. |
[13] | 冯传宴, 刘双, 完颜笑如, 丁梦龙, 李道春, 周尧明. 无人机系统人因设计关键技术研究进展[J]. 航空学报, 2025, 46(11): 531213-531213. |
[14] | 杨锦, 杭旭, 王艳军. 机场管制空域内无人机运行安全风险评估[J]. 航空学报, 2025, 46(11): 531276-531276. |
[15] | 陈琳, 朱庆, 胡翰, 丁雨淋, 顾朋鑫. FLASH:无人机滑坡灾情轻巧感知系统[J]. 航空学报, 2025, 46(11): 531293-531293. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学