航空学报 > 2025, Vol. 46 Issue (11): 531296-531296   doi: 10.7527/S1000-6893.2024.31296

6G低空通信场景下无人机部署优化综述

张海君1(), 夏清悦1, 马旭1, 任超1, 陆阳2   

  1. 1.北京科技大学 计算机与通信工程学院,北京 100083
    2.中国电力科学研究院,北京 100192
  • 收稿日期:2024-09-30 修回日期:2024-10-14 接受日期:2024-11-05 出版日期:2024-11-26 发布日期:2024-11-20
  • 通讯作者: 张海君 E-mail:zhanghaijun@ustb.edu.cn
  • 基金资助:
    国家自然科学基金(62225103);国家自然科学基金(U22B2003);国家自然科学基金(62341103);北京市自然科学基金(L212004)

A review of unmanned aerial vehicles deployment optimization in 6G low-altitude communication scenarios

Haijun ZHANG1(), Qingyue XIA1, Xu MA1, Chao REN1, Yang LU2   

  1. 1.School of Computer & Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China
    2.China Electric Power Research Institute,Beijing 100192,China
  • Received:2024-09-30 Revised:2024-10-14 Accepted:2024-11-05 Online:2024-11-26 Published:2024-11-20
  • Contact: Haijun ZHANG E-mail:zhanghaijun@ustb.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62225103);Beijing Municipal Natural Science Foundation(L212004)

摘要:

随着6G标准的迅速演进,无人机在低空通信网络中的应用成为研究热点。针对无人机在低空通信场景下的部署优化问题,开展了无人机的静态与动态部署策略研究,并对相关的部署优化算法进行了分析。首先,阐述了无人机部署的3种基本策略,即静态部署、单无人机动态部署和多无人机动态部署,探讨了它们在不同应用场景下的优势。其次,详细讨论了无人机部署 优化模型,从低空通信网络的信道模型、约束条件和目标函数3个方面分别进行阐述。在此基础上,系统地对现有的无人机部署优化算法进行了对比,从多角度分析了各类算法的优势与不足。最后,展望了未来无人机部署优化的研究方向,并结合智能反射面、通感一体化等前沿技术进行了分析,旨在为相关领域的研究人员提供参考和借鉴。

关键词: 低空通信网络, 6G, 无人机, 部署优化, 资源分配

Abstract:

With the rapid evolution of 6G standards, the application of Unmanned Aerial Vehicles (UAVs) in low-altitude communication networks has become a research hotspot. This paper gives a review of UAV deployment optimization in low-altitude communication scenarios, conducting analysis of both static and dynamic deployment strategies for UAVs, as well as related deployment optimization algorithms. The article first explains three basic strategies for UAV deployment: static deployment, single-UAV dynamic deployment, and multi-UAV dynamic deployment, exploring their advantages in different application scenarios. Then, the UAV deployment optimization models are discussed in terms of the channel model, constraints, and objective functions within low-altitude communication networks. Based on this, the paper systematically compares existing UAV deployment optimization algorithms, analyzing the strengths and weaknesses of each algorithm from multiple perspectives. Finally, future research directions of UAV deployment optimization are forecasted, and emerging technologies such as intelligent reflecting surfaces and integrated communication and sensing are analyzed to provide reference and insights for researchers in the field.

Key words: low-altitude communication network, 6G, Unmanned Aerial Vehicle (UAV), development optimization, resource allocation

中图分类号: