基于ANCF和SPH的柔性降落伞流固耦合动力学仿真
收稿日期: 2024-06-13
修回日期: 2024-07-19
录用日期: 2024-09-26
网络出版日期: 2024-10-15
基金资助
国家自然科学基金(12172282);航天进入减速与着陆技术实验室开放基金;中央高校基本科研业务费专项资金
Fluid-solid coupled dynamic simulations of flexible parachute based on ANCF and SPH
Received date: 2024-06-13
Revised date: 2024-07-19
Accepted date: 2024-09-26
Online published: 2024-10-15
Supported by
National Natural Science Foundation of China(12172282);Laboratory of Aerospace Entry, Descent and Landing Technology;Fundamental Research Funds for the Central Universities
针对降落伞在展开后下降过程中,降落伞与空气流场之间的柔性结构流固耦合动力学问题,鉴于绝对节点坐标方法(ANCF)在描述柔性结构大变形问题时,克服了传统有限元建模方法带来的弹性变形与刚性变形强耦合问题,本文基于ANCF建立柔性伞绳和伞衣的力学模型。同时,考虑到光滑粒子流方法(SPH)在流场极大变形时,能够自然地捕获快速移动的界面和自由表面,本文采用SPH模拟空气流场,通过弹簧-阻尼模型描述流体粒子和柔性结构之间的耦合效应,对大柔性降落伞进行流固耦合动力学仿真研究。通过数值试验发现:随着流场速度的增大,降落伞有效面积平均值虽然只出现小幅下降,但随时间变化的幅度显著增加。本文研究结果将为柔性降落伞设计提供理论支撑。
李庆军 , 鲁媛媛 , 徐方暖 , 王博 . 基于ANCF和SPH的柔性降落伞流固耦合动力学仿真[J]. 航空学报, 2025 , 46(1) : 630821 -630821 . DOI: 10.7527/S1000-6893.2024.30821
For the dynamic problem of the coupled fluid-structure between the parachute and air flow, and compared with the classic method, the Absolute Nodal Coordinate Formulation (ANCF) can overcome the strong coupling problem of elastic deformation and rigid deformation. In this paper, the method of ANCF is used to build up a mechanical model of flexible parachute rope and canopy. In addition, as the method of Smoothed Particle Hydrodynamics (SPH) can capture the fast-moving interface and free surface when the flow field is greatly deformed, SPH is adopted to simulate the air flow field. The coupling effect between fluid particles and flexible structures is described through the spring-damping model. Fluid-structure coupling dynamics is then conducted to investigate the dynamic behaviours of the flexible parachute. Through the numerical examples, it is found that with the increase of the speed of the fluid, the effective projected area of the parachute is decreased slightly, whereas the variation amplitude of the effective projected area is increased significantly. The findings of this paper are useful for the design of flexible parachutes.
1 | 何青松, 王立武, 王寒冰, 等. 航天器海上伞降回收技术发展与展望[J]. 航天器工程, 2021, 30(4): 124-133. |
HE Q S, WANG L W, WANG H B,et al. Spacecraft parachute offshore recovery development and prospect[J]. Spacecraft Engineering, 2021, 30(4):124-133 (in Chinese). | |
2 | 贾贺, 邹天琪, 荣伟, 等. 不同行星大气下直径比对降落伞气动特性的影响研究[J]. 航天返回与遥感. 2023, 44(1): 70-83. |
JIA H, ZOU T Q, RONG W, et al. Influence of diameter ratio on the aerodynamic performance of parachute system under different atmospheric conditions [J]. Spacecraft Recovery & Remote Sensing, 2023, 44(1): 70-83 (in Chinese). | |
3 | 徐欣, 贾贺, 陈雅倩, 等. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报, 2022, 43(12): 126289. |
XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126289 (in Chinese). | |
4 | 柯鹏, 杨春信, 杨雪松, 等. 重型货物空投系统过程仿真及特性分析[J]. 航空学报, 2006, 27(5): 856-860. |
KE P, YANG C X, YANG X S, et al. System simulation and analysis of heavy cargo airdrop system[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 856-860 (in Chinese). | |
5 | 孙志鸿, 仇博文, 余莉, 等. 伞衣织物微孔射流透气特性[J]. 清华大学学报(自然科学版). 2023, 63(3): 330-337. |
SUN Z H, QIU B W, YU L,et al. Micropore jet permeability characteristics of the canopy fabric[J]. Journal of Tsinghua University (Science and Technology), 2023,63(3): 330-337 (in Chinese). | |
6 | 王学, 冯志刚, 高普云, 等. 降落伞可靠性评定及其试验量决策[J]. 宇航学报, 2010, 31(6): 1685-1689. |
WANG X, FENG Z G, GAO P Y, et al. Parachute reliability assessment and decision-making of experiment times[J]. Journal of Astronautics, 2010, 31(6): 1685-1689 (in Chinese). | |
7 | 高畅, 李岩军, 余莉, 等. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329. |
GAO C, LI Y J, YU L, et al. Effect of sail fullness on the aerodynamic performance of ringsail parachutes[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(3): 322-329 (in Chinese). | |
8 | 简相辉, 金哲岩. 降落伞工作过程数值模拟研究综述[J]. 航空科学技术, 2016, 27(10): 1-7. |
JIAN X H, JIN Z Y. Review on the development of numerical simulations on parachutes[J]. Aeronautical Science & Technology, 2016, 27(10): 1-7 (in Chinese). | |
9 | 昌飞, 贾贺. 基于BP神经网络的降落伞气动力参数辨识[J]. 航天返回与遥感, 2024, 45(2): 19-28. |
CHANG F, JIA H. Aerodynamic parameter estimation of parachute based on BP neural network[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(2): 19-28 (in Chinese). | |
10 | 刘钒, 舒昌, 刘刚. 基于IB-LBFS和绝对节点坐标法的降落伞柔性结构流固耦合数值模拟[J]. 气体物理, 2020, 5(3): 59-68. |
LIU F, SHU C, LIU G. Fluid-structure interaction simulation of parachute based on IB-LBFS and absolute nodal coordinate formulation[J]. Physics of Gases, 2020, 5(3): 59-68 (in Chinese). | |
11 | XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences, 2021, 125: 100728. |
12 | CAO Y H, NIE S, WU Z L. Numerical simulation of parachute inflation: A methodological review[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(2): 736-766. |
13 | 贾贺, 荣伟, 陈国良. 基于LS-DYNA软件的降落伞充气过程仿真研究[J]. 航天器环境工程, 2010, 27(3): 367-373. |
JIA H, RONG W, CHEN G L. The simulation of parachute inflation process based on LS-DYNA[J]. Spacecraft Environment Engineering, 2010, 27(3): 367-373 (in Chinese). | |
14 | CHEN B Q, WANG Y D, ZHAO C D, et al. Numerical visualization of drop and opening process for parachute-payload system adopting fluid?-?solid coupling simulation[J]. Journal of Visualization, 2022, 25(2): 229-246. |
15 | ZHU H, TAO J, SUN Q L, et al. Effect of shear modulus on the inflation deformation of parachutes based on fluid-structure interaction simulation[J]. Sustainability, 2023, 15(6): 5396. |
16 | YANG X, YU L, LIU M, et al. Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method[J]. Chinese Journal of Aeronautics, 2020, 33(6): 1692-1702. |
17 | NIE S C, YU L, LI Y J, et al. Fluid structure interaction of supersonic parachute with material failure[J]. Chinese Journal of Aeronautics, 2023, 36(10): 90-100. |
18 | KIM Y, PESKIN C S. 3-D Parachute simulation by the immersed boundary method[J]. Computers & Fluids, 2009, 38(6): 1080-1090. |
19 | BOUSTANI J, BARAD M F, KIRIS C C, et al. An immersed boundary fluid-structure interaction method for thin, highly compliant shell structures[J]. Journal of Computational Physics, 2021, 438: 110369. |
20 | BOUSTANI J, BARAD M F, KIRIS C C, et al. An immersed interface methodology for simulating supersonic spacecraft parachutes with fluid?-?structure interaction[J]. Journal of Fluids and Structures, 2022, 114: 103742. |
21 | LIU M B, ZHANG Z L. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(8): 984701. |
22 | XU F, WANG J Y, YANG Y, et al. On methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanics[J]. Acta Mechanica Sinica, 2023, 39(2): 722185. |
23 | 孙鹏, 陈晨, 李凤鸣, 等. 基于SPH方法的降落伞展开过程数值研究[J]. 计算机仿真, 2017, 34(8): 89-94. |
SUN P, CHEN C, LI F M, et al. Numerical study of parachute spreading process based on SPH method[J]. Computer Simulation, 2017, 34(8): 89-94 (in Chinese). | |
24 | CHENG H, CHEN C, LIU X H, et al. Numerical study of parachute inflation process based on smoothed particle hydrodynamics fluid structure interaction method[J]. Journal of Industrial Textiles, 2018, 47(6): 1038-1059. |
25 | 姚向茹, 余莉, 吴琼. 降落伞稳降阶段的SPH方法数值模拟[J]. 航天返回与遥感, 2016, 37(3): 48-54. |
YAO X R, YU L, WU Q. Numerical simulation of steady-state descent phase of parachute based on SPH method[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(3): 48-54 (in Chinese). | |
26 | SHABANA A A. An overview of the ANCF approach, justifications for its use, implementation issues, and future research directions[J]. Multibody System Dynamics, 2023, 58(3): 433-477. |
27 | OTSUKA K, MAKIHARA K, SUGIYAMA H. Recent advances in the absolute nodal coordinate formulation: Literature review from 2012 to 2020[J]. Journal of Computational and Nonlinear Dynamics, 2022, 17(8): 080803. |
28 | LIU F, LIU G, SHU C. Fluid-structure interaction simulation based on immersed boundary-lattice Boltzmann flux solver and absolute nodal coordinate formula[J]. Physics of Fluids, 2020, 32(4): 047109. |
29 | HU W, TIAN Q, HU H Y. Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method[J]. Nonlinear Dynamics, 2014, 75(4): 653-671. |
30 | KONG W Z, TIAN Q. Dynamics of fluid-filled space multibody systems considering the microgravity effects[J]. Mechanism and Machine Theory, 2020, 148: 103809. |
31 | HU W, TIAN Q, HU H Y. Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH[J]. Nonlinear Dynamics, 2016, 84(4): 2447-2465. |
32 | GERSTMAYR J, SHABANA A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1): 109-130. |
33 | ZHAO J, TIAN Q, HU H Y. Modal analysis of a rotating thin plate via absolute nodal coordinate formulation[J]. Journal of Computational and Nonlinear Dynamics, 2011, 6(4): 1. |
34 | 刘晓曦. 基于改进核函数的SPH方法及其数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2023. |
LIU X X. SPH method based on improved kernel function and its numerical simulation[D]. Harbin: Harbin Engineering University, 2023 (in Chinese). |
/
〈 |
|
〉 |