电子电气工程与控制

考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计

  • 武天才 ,
  • 王宏伦 ,
  • 任斌 ,
  • 刘一恒 ,
  • 吴星雨 ,
  • 严国乘
展开
  • 1.北京航空航天大学 自动化科学与电气工程学院,北京 100191
    2.北京航空航天大学 沈元学院,北京 100191
    3.北京航空航天大学 飞行器控制一体化技术重点实验室,北京 100191
E-mail: wang_hl_12@126.com

收稿日期: 2023-09-19

  修回日期: 2023-11-09

  录用日期: 2024-01-09

  网络出版日期: 2024-01-16

基金资助

国家自然科学基金(62173022);航空科学基金(2018ZC51031);北京航空航天大学沈元学院卓越研究基金(230121205)

Learning-based integrated fault-tolerant guidance and control for hypersonic vehicles considering avoidance and penetration

  • Tiancai WU ,
  • Honglun WANG ,
  • Bin REN ,
  • Yiheng LIU ,
  • Xingyu WU ,
  • Guocheng YAN
Expand
  • 1.School of Automation Science and Electrical Engineering,Beihang University,Beijing  100191,China
    2.Shen Yuan Honors College,Beihang University,Beijing  100191,China
    3.Science and Technology on Aircraft Control Laboratory,Beihang University,Beijing  100191,China
E-mail: wang_hl_12@126.com

Received date: 2023-09-19

  Revised date: 2023-11-09

  Accepted date: 2024-01-09

  Online published: 2024-01-16

Supported by

National Natural Science Foundation of China(62173022);Aeronautical Science Foundation of China(2018ZC51031);Outstanding Research Project of Shen Yuan Honors College, BUAA(230121205)

摘要

针对再入过程中的禁飞区规避和拦截弹躲避问题,提出一种考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计方法。首先,在纵向制导中,为了提升飞行器的制导性能,基于制导控制一体化设计思想,采用包含姿态容错控制系统的飞行器六自由度模型进行待飞航程的预测;针对随之产生的计算耗时问题,进一步采用深度网络进行预测环节的拟合,以提升算法的实时性;接着,在侧向制导中,为了解决禁飞区规避和拦截弹躲避问题,引入扰动流体动态系统(IFDS)算法进行考虑威胁因素的飞行器期望航向角计算,并结合航向角误差走廊和倾侧角翻转逻辑进行侧向制导指令的求取,使飞行器具备规避与突防能力;然后,考虑到飞行环境的复杂性、飞行器再入段机动能力的差异性和姿态容错控制系统动态特性对制导性能的影响,结合深度强化学习算法进行智能体训练,使其可根据飞行器实时状态进行扰动流体动态系统算法参数的在线决策,提升所提方法的有效性和适应能力。最后,由半物理对比仿真和蒙特卡罗仿真结果可知,所提方法具有较强的规避、突防与制导性能。

本文引用格式

武天才 , 王宏伦 , 任斌 , 刘一恒 , 吴星雨 , 严国乘 . 考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计[J]. 航空学报, 2024 , 45(15) : 329607 -329607 . DOI: 10.7527/S1000-6893.2023.29607

Abstract

To address the problem of no-fly zone and interceptor avoidance during the reentry phase, a learning-based integrated fault-tolerant guidance and control method for hypersonic vehicles considering avoidance and penetration is proposed. Firstly, to improve the guidance performance of the vehicle in longitudinal guidance, the six degree of freedom model of the vehicle, which includes the attitude fault-tolerant control system, is adopted based on the integrated design concept of guidance and control to predict the range-to-go. In view of the resulting problem of time-consuming in calculation, the deep network is further used to fit the predicting process, so as to improve the real-timeliness of the algorithm. Then, to solve the problem of no-fly zone and interceptor avoidance in lateral guidance, the Interfered Fluid Dynamical System(IFDS) algorithm is introduced to calculate the expected heading angle of the vehicle considering threat factors, and the heading angle error corridor and the flip logic of the bank angle are used to obtain the command, so that the vehicle has the ability of avoidance and penetration. Next, considering the complexity of flight environment, the difference of maneuvering ability of vehicle during the reentry phase, and the influence of dynamic characteristics of attitude control system on guidance performance, the deep reinforcement learning algorithm is employed to train the agent, so that the agent can make online decisions on key parameters of IFDS algorithm according to the real-time state of vehicle, and improve the effectiveness and adaptability of the proposed guidance method. Finally, the results of semi-physical comparison simulation and Monte Carlo simulation show that the proposed method can achieve high performance in avoidance, penetration and guidance.

参考文献

1 DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics202235(7): 1-18.
2 WU T C, WANG H L, LIU Y H, et al. Learning-based interfered fluid avoidance guidance for hypersonic reentry vehicles with multiple constraints[J]. ISA Transactions2023139: 291-307.
3 王铮, 邢晓露, 闫天, 等. 高超声速飞行器突防制导的发展现状与未来发展方向[J]. 飞航导弹2021(7): 18-24.
  WANG Z, XING X L, YAN T, et al. Development status and future development direction of hypersonic vehicle penetration guidance[J]. Aerodynamic Missile Journal2021(7): 18-24 (in Chinese).
4 ZHANG Y, ZHANG R, LI H F. Online path decision of no-fly zones avoidance for hypersonic vehicles based on a graph attention network[J]. IEEE Transactions on Aerospace and Electronic Systems202359(5): 5554-5567.
5 余跃, 王宏伦. 基于深度学习的高超声速飞行器再入预测校正容错制导[J]. 兵工学报202041(4): 656-669.
  YU Y, WANG H L. Deep learning-based reentry predictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii202041(4): 656-669 (in Chinese).
6 LU P. Entry guidance: A unified method[J]. Journal of Guidance, Control, and Dynamics201437(3): 713-728.
7 CHENG L, JIANG F H, WANG Z B, et al. Multiconstrained real-time entry guidance using deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems202157(1): 325-340.
8 郭建国, 梁乐成, 周敏, 等. 高速飞行器俯冲段制导控制一体化综述[J]. 航空兵器202330(1): 1-10.
  GUO J G, LIANG L C, ZHOU M, et al. Overview of integrated guidance and control for hypersonic vehicles in dive phase[J]. Aero Weaponry202330(1): 1-10 (in Chinese).
9 HOU M Z, LIANG X L, DUAN G R. Adaptive block dynamic surface control for integrated missile guidance and autopilot[J]. Chinese Journal of Aeronautics201326(3): 741-750.
10 LIU X D, HUANG W W, DU L F. An integrated guidance and control approach in three-dimensional space for hypersonic missile constrained by impact angles[J]. ISA Transactions201766: 164-175.
11 BAO C Y, WANG P, TANG G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics202134(5): 535-553.
12 YAN B B, LIU R F, DAI P, et al. A rapid penetration trajectory optimization method for hypersonic vehicles[J]. International Journal of Aerospace Engineering20192019: 1490342.
13 SHEN Z P, YU J L, DONG X W, et al. Penetration trajectory optimization for the hypersonic gliding vehicle encountering two interceptors[J]. Aerospace Science and Technology2022121: 107363.
14 邵会兵. 滑翔飞行器滑翔能力智能预示与多约束制导研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
  SHAO H B. Gliding manoeuvrability intelligent prediction and multi-constrained guidance for gliding vehicles[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
15 JORRIS T R, COBB R G. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics200932(2): 551-572.
16 ZHAO D J, SONG Z Y. Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming[J]. Acta Astronautica2017137: 60-69.
17 LIANG Z X, LIU S Y, LI Q D, et al. Lateral entry guidance with no-fly zone constraint[J]. Aerospace Science and Technology201760: 39-47.
18 ZHANG D, LIU L, WANG Y J. On-line reentry guidance algorithm with both path and no-fly zone constraints[J]. Acta Astronautica2015117: 243-253.
19 HU Y D, GAO C S, LI J L, et al. A novel adaptive lateral reentry guidance algorithm with complex distributed no-fly zones constraints[J]. Chinese Journal of Aeronautics202235(7): 128-143.
20 惠俊鹏, 汪韧, 郭继峰. 基于强化学习的禁飞区绕飞智能制导技术[J]. 航空学报202344(11): 327416.
  HUI J P, WANG R, GUO J F. Intelligent guidance for no-fly zone avoidance based on reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica202344(11): 327416 (in Chinese).
21 WU T C, WANG H L, YU Y, et al. Hierarchical fault-tolerant control for over-actuated hypersonic reentry vehicles[J]. Aerospace Science and Technology2021119: 107134.
22 惠俊鹏, 汪韧, 俞启东. 基于强化学习的再入飞行器“新质” 走廊在线生成技术[J]. 航空学报202243(9): 325960.
  HUI J P, WANG R, YU Q D. Generating new quality flight corridor for reentry aircraft based on reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica202243(9): 325960 (in Chinese).
23 WU J F, WANG H L, LIU Y H, et al. Learning-based fixed-wing UAV reactive maneuver control for obstacle avoidance[J]. Aerospace Science and Technology2022126: 107623.
24 CHEN Y D, WANG J N, WANG C Y, et al. Three-dimensional cooperative homing guidance law with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics201943(2): 389-397.
25 CHANG J, GUO Z Y, CIESLAK J, et al. Integrated guidance and control design for the hypersonic interceptor based on adaptive incremental backstepping technique[J]. Aerospace Science and Technology201989: 318-332.
26 包为民, 朱建文, 张洪波, 等. 高超声速飞行器全程制导方法[M]. 北京: 科学出版社, 2021: 97-106.
  BAO W M, ZHU J W, ZHANG H B, et al. Full-course guidance method for hypersonic vehicle[M]. Beijing: Science Press, 2021: 97-106 (in Chinese).
27 吴健发, 王宏伦, 王延祥, 等. 无人机反应式扰动流体路径规划[J]. 自动化学报202349(2): 272-287.
  WU J F, WANG H L, WANG Y X, et al. UAV reactive interfered fluid path planning[J]. Acta Automatica Sinica202349(2): 272-287 (in Chinese).
28 FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[DB/OL]. arXiv preprint1802.09477, 2018.
文章导航

/