论 文

光滑型TENO非线性加权六阶低耗散WCNS-CU6-ST格式

  • 吴文昌 ,
  • 韩省思 ,
  • 闵耀兵 ,
  • 燕振国 ,
  • 马燕凯
展开
  • 1.空天飞行空气动力科学与技术全国重点实验室,绵阳 621000
    2.南京航空航天大学 能源与动力学院,南京 210016
.E-mail: xshan@nuaa.edu.cn

收稿日期: 2024-04-24

  修回日期: 2024-05-13

  录用日期: 2024-07-09

  网络出版日期: 2024-08-05

基金资助

国家自然科学基金(52376114);国家科技重大专项(2017-III-0005-0029)

Sixth-order low-dissipation WCNS-CU6-ST scheme based on smooth TENO nonlinear weight

  • Wenchang WU ,
  • Xingsi HAN ,
  • Yaobing MIN ,
  • Zhenguo YAN ,
  • Yankai MA
Expand
  • 1.State Key Laboratory of Aerodynamics,Mianyang 621000,China
    2.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
E-mail: xshan@nuaa.edu.cn

Received date: 2024-04-24

  Revised date: 2024-05-13

  Accepted date: 2024-07-09

  Online published: 2024-08-05

Supported by

National Natural Science Foundation of China(52376114);National Science and Technology Major Project(2017-III-0005-0029)

摘要

空天飞行器的流动环境涉及激波与湍流等复杂流动现象,流场中激波间断与多尺度湍流结构共存使得高阶精度数值模拟面临巨大挑战。为了提升对复杂湍流流动问题模拟的精度,在加权紧致非线性格式(WCNS)框架下,发展了六阶中心/五阶迎风线性混合插值方法;同时考虑到高分辨率的激波捕捉特性,TENO格式中的尺度分离策略被用于发展非线性权函数,针对数值格式的数值收敛性,进一步发展了光滑型S-TENO非线性权函数。通过近似色散关系(ADR)、一维流动问题、三维槽道湍流和跨声速翼型自适应湍流模拟的算例测试,发现线性模板采用六阶中心/五阶迎风的混合插值方法,能够显著降低格式的数值耗散,从而改善槽道湍流的预测精度;同时光滑型S-TENO非线性权函数不仅保持了原TENO格式非线性权函数良好的色散耗散特性,并在跨声速翼型流动的激波/湍流边界层干扰模拟算例中,提升了数值收敛性,数值算例结果表明本文提出的基于光滑型S-TENO权函数的六阶低耗散WCNS-CU6-ST格式能够同时具备数值耗散低与收敛良好的数值特性,有助于进一步提升对激波/湍流等复杂流动问题模拟的准确性。

本文引用格式

吴文昌 , 韩省思 , 闵耀兵 , 燕振国 , 马燕凯 . 光滑型TENO非线性加权六阶低耗散WCNS-CU6-ST格式[J]. 航空学报, 2024 , 45(S1) : 730598 -730598 . DOI: 10.7527/S1000-6893.2024.30598

Abstract

The flow environment of spacecraft involves complex flow phenomena such as shock waves and turbulence. The coexistence of shock wave discontinuities and multiscale turbulent structures in the flow field poses significant challenges to high-order accurate numerical simulations. To effectively reduce numerical dissipation in turbulence simulations, a sixth-order central/fifth-order upwind linear hybrid interpolation was developed under the framework of Weighted Compact Nonlinear Scheme (WCNS). Considering the high-resolution shock capturing characteristics, the scale separation strategy in the TENO scheme is used to develop nonlinear weight functions. For the numerical convergence of the numerical scheme, a smooth S-TENO nonlinear weight function is further developed. Through Approximate Dispersion Relations (ADR), one-dimensional convection problems, and self-adaptive turbulence eddy simulation of three-dimensional channel, it was found that the linear stencil using a sixth-order central/fifth-order upwind linear hybrid interpolation stencil can significantly reduce the numerical dissipation of the scheme, thereby improving the prediction accuracy of channel flow and transonic flow past an airfoil. The proposed smooth S-TENO nonlinear weight not only maintains the good dispersion and dissipation properties of the original TENO nonlinear weight, but also significantly improves the numerical convergence in the cases of shock wave/turbulent boundary layer interaction when transonic flow past an airfoil, thus improving the accuracy of computational results. The numerical results indicate that the optimized sixth-order low-dissipation WCNS-CU6-ST scheme based on smooth S-TENO weight can achieve both low numerical dissipation and good convergence, which is helpful to improve the accuracy of simulations in complex shock/turbulence problems.

参考文献

1 LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics1994115(1): 200-212.
2 JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics1996126(1): 202-228.
3 GEROLYMOS G A, SéNéCHAL D, VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics2009228(23): 8481-8524.
4 JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics2010229(4): 1213-1237.
5 BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics2008227(6): 3191-3211.
6 HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics2005207(2): 542-567.
7 ACKER F, DE R BORGES R B, COSTA B. An improved WENO-Z scheme[J]. Journal of Computational Physics2016313: 726-753.
8 LUO X, WU S P. An improved WENO-Z+ scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics2021445: 110608.
9 FAN P. High order weighted essentially nonoscillatory WENO-η schemes for hyperbolic conservation laws[J]. Journal of Computational Physics2014269: 355-385.
10 刘博, 李诗尧, 陈嘉禹, 等. 基于映射函数的新型五阶WENO格式[J]. 航空学报202243(12): 126155.
  LIU B, LI S Y, CHEN J Y, et al. New fifth order WENO scheme based on mapping functions[J]. Acta Aeronautica et Astronautica Sinica202243(12): 126155 (in Chinese).
11 LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics1992103(1): 16-42.
12 DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics2000165(1): 22-44.
13 DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics1997130(1): 77-91.
14 DENG X G, LIU X, MAO M L, et al. Investigation on weighted compact fifth-order nonlinear scheme and applications to complex flow[C]∥ Proceedings of the 17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005.
15 DENG X G, MAO M L, TU G H, et al. Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions[J]. AIAA Journal201048(12): 2840-2851.
16 DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics2013239: 90-111.
17 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报201536(9): 2923-2929.
  WANG Y T, SUN Y, WANG G X, et al. High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica201536(9): 2923-2929 (in Chinese).
18 王运涛, 孙岩, 孟德虹, 等. CRM翼/身/平尾组合体模型高阶精度数值模拟[J]. 航空学报201637(12): 3692-3697.
  WANG Y T, SUN Y, MENG D H, et al. High-order precision numerical simulation of CRM wing/body/horizontal tail model[J]. Acta Aeronautica et Astronautica Sinica201637(12): 3692-3697 (in Chinese).
19 NONOMURA T, FUJII K. Effects of difference scheme type in high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics2009228(10): 3533-3539.
20 FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics2016305: 333-359.
21 HAMZEHLOO A, LUSHER D J, LAIZET S, et al. On the performance of WENO/TENO schemes to resolve turbulence in DNS/LES of high-speed compressible flows[J]. International Journal for Numerical Methods in Fluids202193(1): 176-196.
22 DE VANNA F, BALDAN G, PICANO F, et al. Effect of convective schemes in wall-resolved and wall-modeled LES of compressible wall turbulence[J]. Computers & Fluids2023250: 105710.
23 FU L. Review of the high-order TENO schemes for compressible gas dynamics and turbulence[J]. Archives of Computational Methods in Engineering202330(4): 2493-2526.
24 HIEJIMA T. A high-order weighted compact nonlinear scheme for compressible flows[J]. Computers & Fluids2022232: 105199.
25 ZHANG H B, ZHANG F, XU C G. Towards optimal high-order compact schemes for simulating compressible flows[J]. Applied Mathematics and Computation2019355: 221-237.
26 ZHANG H B, ZHANG F, LIU J, et al. A simple extended compact nonlinear scheme with adaptive dissipation control[J]. Communications in Nonlinear Science and Numerical Simulation202084: 105191.
27 吴文昌, 马燕凯, 韩省思, 等. 一种光滑型 TENO非线性加权的WCNS格式 [J]. 航空学报202445 (8): 129052.
  WU W C, MA Y K, HAN X S, et al. A smooth TENO nonlinear weighting for WCNS scheme[J]. Acta Aeronautica et Astronuatica Sinica202445 (8): 129052 (in Chinese).
28 GARNIER E, MOSSI M, SAGAUT P, et al. On the use of shock-capturing schemes for large-eddy simulation[J]. Journal of Computational Physics1999153(2): 273-311.
29 KAMIYA T, ASAHARA M, NONOMURA T. Application of central differencing and low-dissipation weights in a weighted compact nonlinear scheme[J]. International Journal for Numerical Methods in Fluids201784(3): 152-180.
30 HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics2010229(23): 8952-8965.
31 FAN P, SHEN Y Q, TIAN B L, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics2014269: 329-354.
32 WONG M L, LELE S K. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows[J]. Journal of Computational Physics2017339: 179-209.
33 ZHAO G Y, SUN M B, XIE S B, et al. Numerical dissipation control in an adaptive WCNS with a new smoothness indicator[J]. Applied Mathematics and Computation2018330: 239-253.
34 PIROZZOLI S. On the spectral properties of shock-capturing schemes[J]. Journal of Computational Physics2006219(2): 489-497.
35 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学202042(2): 210-219.
  ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science202042(2): 210-219 (in Chinese).
36 HAN X S, KRAJNOVI? S. An efficient very large eddy simulation model for simulation of turbulent flow[J]. International Journal for Numerical Methods in Fluids201371(11): 1341-1360.
37 HAN X S, KRAJNOVI? S. Very-large-eddy simulation based on k-ω model[J]. AIAA Journal201553(4): 1103-1108.
38 HAN X S, KRAJNOVI? S. Validation of a novel very large eddy simulation method for simulation of turbulent separated flow[J]. International Journal for Numerical Methods in Fluids201373(5): 436-461.
39 MIN Y B, WU W C, ZHANG H D, et al. Self-adaptive turbulence eddy simulation of flow control for drag reduction around a square cylinder with an upstream rod[J]. European Journal of Mechanics-B/Fluids2023100: 185-201.
40 MOSER R D, KIM J, MANSOUR N N. Direct numerical simulation of turbulent channel flow up to Reτ=590[J]. Physics of Fluids199911(4): 943-945.
41 WU W C, HAN X S, MIN Y B, et al. Improved self-adaptive turbulence eddy simulation for complex flows and stall prediction using high-order schemes[J]. European Journal of Mechanics- B/Fluids2024106: 48-64.
42 JACQUIN L, MOLTON P, DECK S, et al. Experimental study of shock oscillation over a transonic supercritical profile[J]. AIAA Journal200947(9): 1985-1994.
43 CUONG NGUYEN N, TERRANA S, PERAIRE J. Large-eddy simulation of transonic buffet using matrix-free discontinuous Galerkin method[J]. AIAA Journal202260(5): 3060-3077.
文章导航

/