航空计算与仿真技术专栏

红外多波段成像末制导技术研究现状与展望

  • 李少毅 ,
  • 卫孟杰 ,
  • 杨俊彦 ,
  • 杨曦 ,
  • 孟中杰
展开
  • 1.西北工业大学 航天学院,西安 710072
    2.上海航天控制技术研究所,上海 201109
.E-mail: nwpuyx@163.com

收稿日期: 2024-03-20

  修回日期: 2024-05-09

  录用日期: 2024-05-23

  网络出版日期: 2024-05-29

基金资助

国家自然科学基金(62273279);国家资助博士后研究人员计划(GZC20232105);西北工业大学博士论文创新基金(CX2024043)

Research status and prospects of infrared multi-band imaging terminal guidance technology

  • Shaoyi LI ,
  • Mengjie WEI ,
  • Junyan YANG ,
  • Xi YANG ,
  • Zhongjie MENG
Expand
  • 1.School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Shanghai Academy of Spaceflight Technology,Shanghai 201109,China
E-mail: nwpuyx@163.com

Received date: 2024-03-20

  Revised date: 2024-05-09

  Accepted date: 2024-05-23

  Online published: 2024-05-29

Supported by

National Natural Science Foundation of China(62273279);Postdoctoral Fellowship Program of CPSF(GZC20232105);Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2024043)

摘要

随着红外干扰对抗、人工智能、无人协同等技术的不断发展,红外成像制导武器越来越多地面临强背景干扰、强人工干扰、强战术动作干扰等强对抗作战环境,传统的单一波段红外成像探测技术已无法满足复杂战场环境下的目标识别与抗干扰任务,由此红外多波段成像末制导技术受到了广泛关注,按功能阶段划分其主要包括红外多波段图像融合、目标检测和多波段抗干扰技术等。目前,对红外多波段成像末制导技术的研究主要集中在红外多波段图像融合方面,但相关综述较少。从末制导技术现状、多波段信息运用技术现状和未来技术发展方向等角度对红外多波段成像末制导技术进行了综述。首先,对红外多波段成像制导技术的发展现状做出了总结,分析了多波段红外场景特性与波段选段,介绍了国内外现役多波段成像制导武器,并总结了目前红外多波段制导武器面临的主要问题;其次,重点对国内外研究集中的图像融合技术进行了分类和分析;然后,从多波段信息运用角度,介绍了基于红外多波段图像的目标检测、目标识别、抗干扰技术发展现状;最后,对红外多波段成像末制导技术的未来发展趋势进行了展望,分析了群体智能协同化、多模态智能运用与信息融合和探感导一体化智能对抗的重要性。

本文引用格式

李少毅 , 卫孟杰 , 杨俊彦 , 杨曦 , 孟中杰 . 红外多波段成像末制导技术研究现状与展望[J]. 航空学报, 2024 , 45(20) : 630427 -630427 . DOI: 10.7527/S1000-6893.2024.30427

Abstract

With the continuous development of technologies such as infrared interference countermeasures, artificial intelligence, and unmanned collaboration, infrared imaging guided weapons are increasingly faced with strong combat environments such as strong background interference, strong artificial interference, and strong tactical action interference. The traditional single-band infrared imaging detection technology can no longer meet target identification and anti-jamming tasks in complex battlefield environments. Therefore, infrared multi-band imaging terminal guidance technology has received widespread attention. According to functional stages, the technology mainly includes infrared multi-band image fusion, target detection, multi-band anti-interference technology, etc. At present, research on the infrared multi-band imaging terminal guidance technology mainly focuses on infrared multi-band image fusion, but there are few relevant reviews. This article aims to review the infrared multi-band imaging terminal guidance technology from the perspectives of the current status of terminal guidance technology and multi-band information application technology and future technology development directions. Firstly, this paper summarizes the development status of infrared multi-band imaging guidance technology, analyzes the multi-band infrared scene characteristics and band selection, introduces the multi-band imaging guidance weapons currently in service at home and abroad, and summarizes the current challenges faced by infrared multi-band guidance weapons. Secondly, the image fusion technologies concentrated in domestic and foreign research are classified and analyzed. Then, from the perspective of multi-band information application, the development status of target detection, target recognition, and anti-interference technology based on infrared multi-band images is introduced. Finally, the future development trend of infrared multi-band imaging terminal guidance technology is discussed, and the importance of group intelligence collaboration, multi-modal intelligence application and information fusion, and detection-sensing-guidance integrated intelligent confrontation are analyzed.

参考文献

1 于俊庭, 李少毅, 张平, 等. 光电成像末制导智能化技术研究与展望[J]. 红外与激光工程202352(5): 3788/IRLA20220725.
  YU J T, LI S Y, ZHANG P, et al. Research and prospect of intelligent technology of optoelectronic imaging terminal guidance[J]. Infrared and Laser Engineering202352(5): 3788/IRLA20220725 (in Chinese).
2 赵善彪, 张天孝, 李晓钟. 红外导引头综述[J]. 飞航导弹2006(8): 42-45.
  ZHAO S B, ZHANG T X, LI X Z. Overview of infrared seeker[J]. Winged Missiles Journal2006(8): 42-45 (in Chinese).
3 赵志刚, 王鑫, 彭廷海, 等. 国外中长波双波段红外成像技术的发展及应用[J]. 红外技术202042(4): 312-319.
  ZHAO Z G, WANG X, PENG T H, et al. Status quo and application of middle and long wave dual-band infrared imaging technologies in Occident[J]. Infrared Technology202042(4): 312-319 (in Chinese).
4 张兴德, 李荣刚, 刘琳, 等. 红外双波段成像系统的研究与发展[J]. 激光与红外201040(8): 801-804.
  ZHANG X D, LI R G, LIU L, et al. Research and development of dual-band infrared camera system[J]. Laser & Infrared201040(8): 801-804 (in Chinese).
5 贾明东, 李根, 贺仕伟, 等. 双波段红外目标检测综述[J]. 飞控与探测20236(2): 60-69.
  JIA M D, LI G, HE S W, et al. Review of two-band infrared target detection[J]. Flight Control & Detection20236(2): 60-69 (in Chinese).
6 LIU Y, CHEN X, WANG Z F, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion201842: 158-173.
7 李泽军, 李志勇, 占明明, 等. 光谱型红外诱饵剂研究进展 [J]. 固体火箭技术: 1-9.
  LI Z J, LI Z Y, ZHAN M M, et al. Research progress of spectral improved infrared decoy [J]. Journal of Solid Rocket Technology: 1-9 (in Chinese).
8 郑志伟,白晓东,胡功衔, 等. 空空导弹红外导引系统设计 [M]. 北京; 国防工业出版社. 2006: 82-94.
  ZHENG Z W, BAI X D, HU G X, et al. Air-to-air missile infrared guidance system design [M]. Beijing, National Defense Industry Press. 2006: 82-94 (in Chinese).
9 黄猛, 王雅芬, 沙江, 等. 美国近年发展的红外末制导反舰导弹综述[C]∥第十五届全国信号和智能信息处理与应用学术会议论文集. 北京: 计算机工程与应用, 2022: 102-105.
  HUANG M, WANG Y F, SHA J, et al. Summary of infrared terminally guided anti-slip missiles developed by United States in recent years[C]∥15th CCSP. Beijing: Computer Engineering and Applications, 2022: 102-105 (in Chinese).
10 KONGSBERG. NSM-JSM MISSILES Precision Strike against Sea & Land targets[EB/OL]. (2023-05-04) [2024-03-20]. .
11 侯学隆, 王宗杰, 谢宇鹏. NSM反舰导弹技术性能与作战能力研究[J]. 飞航导弹2020(5): 26-33.
  HOU X L, WANG Z J, XIE Y P. Research on technical performance and combat capability of NSM anti-ship missile[J]. Aerodynamic Missile Journal2020(5): 26-33 (in Chinese).
12 RAFAEL SMART AND TO THE POINT Python-5 Full Sphere IR Air-to-Air or Surface-to-Air Missile[EB/OL]. (2016-07-29) [2024-03-20]. ∥.
13 刘珂, 陈宝国, 李丽娟. 空空导弹红外导引头技术发展趋势及关键技术[J]. 激光与红外201141(10): 1117-1121.
  LIU K, CHEN B G, LI L J. Development tendency and key technology of IR seeker for air-to-air missile[J]. Laser & Infrared201141(10): 1117-1121 (in Chinese).
14 AIRFORCE TECHNOLOGY. A-Darter Air-to-Air Missile (AAM)[EB/OL]. (2012-05-01) [2024-05-10]. .
15 MISSILERY. INFO. Short range airborne missile RVV-MD[EB/OL]. (2020-05-28) [2024-03-20]. .
16 SISTEMAS DE ARMAS. MAA-1 PIRANHA[EB/OL]. (2009-03-01) [2024-03-20]. .
17 Arm Technology. Mistral Air Defence Missile System, France[EB/OL]. (2023.07.28) [2024-03-20]. .
18 FRENCH FLEET AIR ARM. MBDA MICA EM/IR[EB/OL]. (2011-11-05) [2024-03-20]. .
19 LIN J, LI S Y, ZHANG L, et al. IR-TransDet: Infrared dim and small target detection with IR-transformer[J]. IEEE Transactions on Geoscience and Remote Sensing202361: 5004813.
20 LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature1999401: 788-791.
21 STEELE P M, PERCONTI P. Part task investigation of multispectral image fusion using gray scale and synthetic color night-vision sensor imagery for helicopter pilotage[C]∥SPIE Proceedings, Targets and Backgrounds: Characterization and Representation III. San Francisco: SPIE, 1997.
22 吴少迟. 基于FPGA的双波段红外图像融合实时处理系统[D]. 南京: 南京理工大学, 2018.
  WU S C. Real-time processing system of dual-band infrared image fusion based on FPGA[D].Nanjing: Nanjing University of Science and Technology, 2018 (in Chinese).
23 MüLLER M, SCHREER O, LóPEZ SáENZ M. Real-time image processing and fusion for a new high-speed dual-band infrared camera[C]∥SPIE Proceedings, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XVIII. San Francisco: SPIE, 2007.
24 赵玲, 周宽, 喻松林, 等. DRF红外双波段彩色图像融合算法[J]. 激光与红外202252(1): 64-70.
  ZHAO L, ZHOU K, YU S L, et al. DRF infrared dual band color image fusion algorithm[J]. Laser & Infrared202252(1): 64-70 (in Chinese).
25 赵玲. 基于红外双波段的图像融合技术研究[D]. 北京: 中国电子科技集团公司电子科学研究院, 2022.
  ZHAO L. Based on infrared dual-band image fusion technology[D].: Beijing: China Academic of Electronics and Information Technology, 2022 (in Chinese).
26 罗璐瑶. 双色红外图像融合处理技术研究及实现[D]. 南京: 南京理工大学, 2020.
  LUO L Y. Research and implementation of two-color infrared image fusion processing technology[D].Nanjing: Nanjing University of Science and Technology, 2020 (in Chinese).
27 BURT P J, ADELSON E H. The Laplacian pyramid as a compact image code[M]∥Readings in Computer Vision. Amsterdam: Elsevier, 1987: 671-679.
28 TOET A, VAN RUYVEN L J, VALETON J M. Merging thermal and visual images by A contrast pyramid[J]. Optical Engineering198928(7): 789-92.
29 TOET A. A morphological pyramidal image decomposition[J]. Pattern Recognition Letters19899(4): 255-261.
30 MARSHALL S, MATSOPOULOS G K, BRUNT J N H. Fusion of MR and CT images of the human brain using multiresolution morphology[M]∥Computational Imaging and Vision. Dordrecht: Springer Netherlands, 1994: 317-324.
31 PETROVI? V S, XYDEAS C S. Gradient-based multiresolution image fusion[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society200413(2): 228-237.
32 陈力. 双波段图像融合方法研究[D]. 南京: 南京理工大学, 2016.
  CHEN L. Research on dual-band image fusion method[D]. Nanjing: Nanjing University of Science and Technology, 2016 (in Chinese).
33 朱亮亮. 红外融合方法及测试技术研究[D]. 南京: 南京理工大学, 2021.
  ZHU L L. Research on infrared fusion method and testing technology[D].Nanjing: Nanjing University of Science and Technology, 2021 (in Chinese).
34 KARALI A O, CAKIR S, AYTA? T. Multiscale contrast direction adaptive image fusion technique for MWIR-LWIR image pairs and LWIR multifocus infrared images[J]. Applied Optics201554(13): 4172.
35 LI H, MANJUNATH B S, MITRA S K. Multi-sensor image fusion using the wavelet transform[C]∥Proceedings of 1st International Conference on Image Processing. Piscataway: IEEE Press, 1994: 51-55.
36 MALLAT S G. Multifrequency channel decompositions of images and wavelet models[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing198937(12): 2091-2110.
37 孙玉秋, 田金文, 柳健. 基于小波变换的双色红外图像融合检测方法[J]. 红外与激光工程200736(2): 240-243.
  SUN Y Q, TIAN J W, LIU J. Dual band infrared image fusion detection based on wavelet transform[J]. Infrared and Laser Engineering200736(2): 240-243 (in Chinese).
38 朱祥玲, 吴钦章, 陈洪. 基于小波变换的双波段红外图像融合方法[J]. 激光与红外201444(5): 572-576.
  ZHU X L, WU Q Z, CHEN H. Fusion algorithm of dual waveband infrared images based on wavelet transformation[J]. Laser & Infrared201444(5): 572-576 (in Chinese).
39 付莹. 海面双波段红外图像配准与融合方法研究[D]. 大连: 大连海事大学, 2017.
  FU Y. Research on the registration and fusion methods of dual-band infrared image of sea surface[D].Dalian: Dalian Maritime University, 2017 (in Chinese).
40 仇荣超, 吕俊伟, 宫剑, 等. 多波段前视红外图像融合的海面杂乱背景平滑方法[J]. 光谱学与光谱分析202040(4): 1120-1126.
  QIU R C, Lü J W, GONG J, et al. Smoothing method for sea surface rough background based on multi-spectral forward-looking infrared images fusion[J]. Spectroscopy and Spectral Analysis202040(4): 1120-1126 (in Chinese).
41 陈皓. 双波段红外成像及数据融合技术研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.
  CHEN H. Research for dual-band infrared imagery and date fusion[D].Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014 (in Chinese).
42 张承泓. 红外双波段图像融合系统关键技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2017.
  ZHANG C H. Research on key technologies of dual band infrared image fusion system[D].Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2017 (in Chinese).
43 JOHNSON J L, PADGETT M L. PCNN models and applications[J]. IEEE Transactions on Neural Networks199910(3): 480-498.
44 李华锋. 非采样Contourlet变换与PCNN相结合的图像融合方法研究[D]. 重庆: 重庆大学, 2009.
  LI H F. Study on the method of image fusion based on nonsubsampled contourlet transform and PCNN[D].Chongqing: Chongqing University, 2009 (in Chinese).
45 祝念. 高温尾焰红外光谱特性分析及探测波段选取技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2018.
  ZHU N. Analysis of infrared spectra characteristics of high temperature plume and selection of detection bands[D].Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2018 (in Chinese).
46 马振华. 基于双波段的红外目标探测算法研究[D]. 西安: 西安电子科技大学, 2018.
  MA Z H. The research on dual-band infrared target detection algorithm[D].Xi’an: Xidian University, 2018 (in Chinese).
47 MIAO Q G, SHI C, XU P F, et al. A novel algorithm of image fusion using shearlets[J]. Optics Communications2011284(6): 1540-1547.
48 陈堃. 基于红外双波段的图像融合技术研究[D]. 西安: 西安电子科技大学, 2019.
  CHEN K. Research on infrared dual-band image fusion technology[D].Xi’an: Xidian University, 2019 (in Chinese).
49 YANG B, LI S T. Pixel-level image fusion with simultaneous orthogonal matching pursuit[J]. Information Fusion201213(1): 10-19.
50 MAIRAL J, BACH F R, PONCE J, et al. Online learning for matrix factorization and sparse coding[J]. Journal of Machine Learning Research201011: 19-60.
51 YANG B, LI S T. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement201059(4): 884-892.
52 YU N N, QIU T S, BI F, et al. Image features extraction and fusion based on joint sparse representation[J]. IEEE Journal of Selected Topics in Signal Processing20115(5): 1074-1082.
53 YIN H T, LI S T, FANG L Y. Simultaneous image fusion and super-resolution using sparse representation[J]. Information Fusion201314(3): 229-240.
54 李美丽, 李言俊, 王红梅, 等. NSCT和非负矩阵分解的图像融合方法[J]. 计算机工程与应用201046(8): 21-24.
  LI M L, LI Y J, WANG H M, et al. Image fusion algorithm based on NSCT and non-negative matrix factorization[J]. Computer Engineering and Applications201046(8): 21-24 (in Chinese).
55 李朝阳. 红外多波段图像融合算法研究[D]. 北京: 中国科学院大学, 2018.
  LI Z Y. Research on infrared multi-band image fusion algorithm[D].Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese).
56 ZHENG Y F, ESSOCK E A, HANSEN B C. An advanced image fusion algorithm based on wavelet transform: incorporation with PCA and morphological processing[C]∥SPIE Proceedings, Image Processing: Algorithms and Systems III. San Francisco: SPIE, 2004.
57 ZHENG Y F, ESSOCK E A, HANSEN B C, et al. A new metric based on extended spatial frequency and its application to DWT based fusion algorithms[J]. Information Fusion20078(2): 177-192.
58 QIN W Q, KUN G, GUOQIANG N. Image fusion and its real-time processing in dual-band infrared night vision system[C]∥2008 International Conference on Optical Instruments and Technology. San Francisco: SPIE, 2008: 7156.
59 LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion201524: 147-164.
60 ZHANG Y, LIU Y, SUN P, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion202054: 99-118.
61 冯迪. 基于深度学习的红外双波段图像融合算法研究[D]. 武汉: 华中科技大学, 2021.
  FENG D. Research on infrared dual-band image fusion based on deep learning[D].Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese).
62 王宇. 长线列红外中长波图像融合关键技术研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.
  WANG Y. Research on key technologies for long linear mid-wave and long-wave IR image fusion[D].Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014 (in Chinese).
63 GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[DB/OL]. arXiv preprint: 1406.2661, 2014.
64 RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[DB/OL]. arXiv preprint: 1511.06434, 2015.
65 MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion201945: 153-178.
66 DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets[C]∥SPIE Proceedings, Signal and Data Processing of Small Targets 1999. San Francisco: SPIE, 1999.
67 AGHAZIYARATI S, MORADI S, TALEBI H. Small infrared target detection using absolute average difference weighted by cumulative directional derivatives[J]. Infrared Physics and Technology2019101: 78-87.
68 MORADI S, MOALLEM P, SABAHI M F. Fast and robust small infrared target detection using absolute directional mean difference algorithm[J]. Signal Processing2020177: 107727.
69 PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing201452(1): 574-581.
70 HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters201411(12): 2168-2172.
71 WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition201658: 216-226.
72 WANG H, ZHOU L P, WANG L. Miss detection vs. false alarm: adversarial learning for small object segmentation in infrared images[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 8508-8517.
73 ZHAO M X, CHENG L, YANG X, et al. TBC-Net: A real-time detector for infrared small target detection using semantic constraint[DB/OL]. arXiv2001. 05852, 2019.
74 LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing202332: 1745-1758.
75 ZHANG T F, LI L, CAO S Y, et al. Attention-guided pyramid context networks for detecting infrared small target under complex background[J]. IEEE Transactions on Aerospace and Electronic Systems202359(4): 4250-4261.
76 黄浩. 双波段红外成像目标检测与识别方法研究[D]. 长沙: 国防科学技术大学, 2013.
  HUANG H. Research on techniques of detection and recognition of target in dual-band infrared[D].Changsha: National University of Defense Technology, 2013 (in Chinese).
77 李秋华. 双色红外成像制导自动目标识别与跟踪技术研究[D]. 长沙: 国防科学技术大学, 2005.
  LI Q H. Automatic target recognition and tracking technology for the two-color IR imaging guidence[D].Changsha: National University of Defense Technology, 2005 (in Chinese).
78 黄浩, 陶华敏, 陈尚锋. 基于混合融合策略的双波段红外小目标检测方法[J]. 红外与激光工程201443(9): 2827-2831.
  HUANG H, TAO H M, CHEN S F. Dual-band infrared dim target detection based on hybrid fusion algorithm[J]. Infrared and Laser Engineering201443(9): 2827-2831 (in Chinese).
文章导航

/