碳纳米管树脂复合薄膜的抗横向高速冲击行为
收稿日期: 2024-01-26
修回日期: 2024-03-28
录用日期: 2024-04-29
网络出版日期: 2024-05-14
基金资助
国家自然科学基金(12302485);陕西省教育厅一般专项科研计划项目(自然科学项目)(23JK0569)
Transverse high-speed impact resistance of carbon nanotube resin composite films
Received date: 2024-01-26
Revised date: 2024-03-28
Accepted date: 2024-04-29
Online published: 2024-05-14
Supported by
National Natural Science Foundation of China(12302485);General Special Scientific Research Project of Shaanxi Provincial Department of Education(23JK0569)
本文利用一级轻气炮实验,研究了碳纳米管(CNT)薄膜抵抗横向高速冲击的性能以及树脂含量对冲击性能的影响规律;结合数值仿真手段,获得了在直径为3 mm的钢球的冲击作用下纯CNT薄膜以及浸渍了20%、50%、80%浓度的环氧树脂溶液的CNT薄膜的临界穿透速度,分别为26.2 m/s、27.1 m/s、27.96 m/s和35.3 m/s。结果表明环氧树脂可以提升CNT薄膜的抗冲击力学性能,且随着环氧树脂浓度的提高,提升效果逐渐明显。通过微观形貌观测发现,CNT树脂复合薄膜在高速冲击下,其增强机制主要以微裂纹吸能为主。本研究通过研究CNT树脂复合薄膜在高速冲击下的力学行为,揭示CNT在横向冲击载荷下的增强机制,旨在对层间增韧复合材料的设计、制备及其力学性能研究提供帮助和指导。
李周仪 , 刘浩然 , 任腾飞 , 刘骁骁 , 王弘起 . 碳纳米管树脂复合薄膜的抗横向高速冲击行为[J]. 航空学报, 2024 , 45(22) : 430239 -430239 . DOI: 10.7527/S1000-6893.2024.30239
This study investigates the performance of Carbon NanoTube (CNT) films against transverse high-speed impacts and the effect of resin content on the impact performance using a one-stage light air gun experiment. Combining numerical simulations, we obtain the critical penetration velocities of pure CNT films and those impregnated with 20%, 50% and 80% epoxy resin solution under the impact of a steel ball with a diameter of 3 mm, which are 26.2 m/s, 27.1 m/s, 27.96 m/s, and 35.3 m/s, respectively. The results show that the epoxy resin can enhance the mechanical properties of CNT films, and the enhancement effect gradually grows with the increase of epoxy resin concentration. Through the observation of microscopic morphology, we discover that the enhancement mechanism of the CNT resin composite film under high-speed impact is mainly based on the energy absorption of microcracks. By investigating into the mechanical behaviour of CNT resin composite films under high-speed impact to reveal the enhancement mechanism of CNT under transverse impact load, this study aims to provide help and guidance for the design and preparation of interlayer toughened composites and their mechanical property research.
1 | KHAN R. Fiber bridging in composite laminates: A literature review[J]. Composite Structures, 2019, 229: 111418. |
2 | BOTELHO E C, ALMEIDA SILVA R, PARDINI L C, et al. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures[J]. Materials Research, 2006, 9(3): 247-256. |
3 | WANG F S, JI Y Y, YU X S, et al. Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike[J]. Composite Structures, 2016, 145: 226-241. |
4 | IIJIMA S. Helical microtubules of graphitic carbon?[J]. Nature, 1991, 354: 56-58. |
5 | HU Z H, SRINIVASAN M P, NI Y M. Novel activation process for preparing highly microporous and mesoporous activated carbons[J]. Carbon, 2001, 39(6): 877-886. |
6 | VOLKOV A N, ZHIGILEI L V. Heat conduction in carbon nanotube materials: Strong effect of intrinsic thermal conductivity of carbon nanotubes?[J]. Applied Physics Letters, 2012, 101(4): 043113. |
7 | XIE X, MAI Y, ZHOU X. Dispersion and alignment of carbon nanotubes in polymer matrix: A review[J]. Materials Science and Engineering R: Reports, 2005, 49(4): 89-112. |
8 | WU K J, NIU Y T, ZHANG Y Y, et al. Continuous growth of carbon nanotube films: From controllable synthesis to real applications?[J]. Composites Part A: Applied Science and Manufacturing, 2021, 144: 106359. |
9 | LI Z Y, WANG Y, CAO J C, et al. Effects of loading rates on mode I interlaminar fracture toughness of carbon/epoxy composite toughened by carbon nanotube films[J]. Composites Part B: Engineering, 2020, 200: 108270. |
10 | LI Z Y, WANG Z, LU W B, et al. Loading rate dependence of mode II fracture toughness in laminated composites reinforced by carbon nanotube films[J]. Composites Science and Technology, 2021, 215: 109005. |
11 | TAN W, STALLARD J C, SMAIL F R, et al. The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites[J]. Carbon, 2019, 150: 489-504. |
12 | 徐小魁, 张远, 蒋瑾, 等. 碳纳米管薄膜电加热固化复合材料研究[J]. 炭素技术, 2017, 36(6): 18-23, 49. |
XU X K, ZHANG Y, JIANG J, et al. Composite curing via Joule heating of carbon nanotube film[J]. Carbon Techniques, 2017, 36(6): 18-23, 49 (in Chinese). | |
13 | 曲抒旋, 巩文斌, 孙小珠, 等. 基于碳纳米管薄膜的复合材料在线损伤监测[J]. 航空学报, 2022, 43(1): 424949. |
QU S X, GONG W B, SUN X Z, et al. On-line damage monitoring of composites based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 424949 (in Chinese). | |
14 | XIE B, LIU Y L, DING Y T, et al. Mechanics of carbon nanotube networks: Microstructural evolution and optimal design[J]. Soft Matter, 2011, 7(21): 10039-10047. |
15 | CHEN H, ZHANG L Y, CHEN J B, et al. Energy dissipation capability and impact response of carbon nanotube buckypaper: A coarse-grained molecular dynamics study[J]. Carbon, 2016, 103: 242-254. |
16 | XIAO K L, LEI X D, CHEN Y Y, et al. Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact[J]. Carbon, 2021, 175: 478-489. |
17 | 王文帅, 王鹏飞, 田杰, 等. 双层碳纳米管薄膜的侵彻力学性能[J]. 高压物理学报, 2022, 36(4): 99-111. |
WANG W S, WANG P F, TIAN J, et al. Penetration mechanical properties of double-layer carbon nanotube films?[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 99-111 (in Chinese). | |
18 | XIAO K L, ZHANG P F, HU D M, et al. Micron-thick interlocked carbon nanotube films with excellent impact resistance via micro-ballistic impact[J]. Small, 2023, 19(38): 2302403. |
19 | 张炜. 碳纳米管薄膜的动态力学性能研究[D]. 北京: 中国科学院大学, 2022: 42-77. |
ZHANG W. Study on the dynamic mechanical behavior of carbon nanotube film[D]. Beijing: University of Chinese Academy of Sciences, 2022: 42-77 (in Chinese). | |
20 | HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1981, 48(4): 846. |
21 | 吕卫帮. 基于范德华力的碳纳米管系统界面力学性能研究[D]. 北京: 清华大学, 2009: 27-39. |
LYU W B. Studies on the mechanical properties of | |
carbon nanotubes systems’ interfaces [D].Beijing: Tsinghua University, 2009: 27-39 (in Chinese). | |
22 | CHARLIER J, MICHENAUD J. Energetics of multilayered carbon tubules[J]. Physical Review Letters, 1993, 70(12): 1858-1861. |
23 | 肖凯璐. 二维材料冲击动力学行为的多尺度研究[D]. 北京: 中国科学院大学, 2021: 85-146. |
XIAO K L. Multi-scale study on the dynamic behavior of two-dimensional materials?[D]. Beijing: University of Chinese Academy of Sciences, 2021: 85-146 (in Chinese). |
/
〈 |
|
〉 |