流体力学与飞行力学

横向复合过载下固体火箭发动机压强振荡

  • 艾诗迪 ,
  • 李军伟 ,
  • 田忠亮 ,
  • 韩磊 ,
  • 王宁飞
展开
  • 1.北京理工大学 宇航学院,北京 100081
    2.北京航天发射技术研究所,北京 100048
    3.中国北方工业股份有限公司,北京 100053
.E-mail: david78lee@bit.edu.cn

收稿日期: 2024-01-25

  修回日期: 2024-02-21

  录用日期: 2024-03-20

  网络出版日期: 2024-04-03

Solid rocket motor pressure oscillations under lateral composite overloads

  • Shidi AI ,
  • Junwei LI ,
  • Zhongliang TIAN ,
  • Lei HAN ,
  • Ningfei WANG
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing  100081,China
    2.Beijing Institute of Space Launch Technology,Beijing  100048,China
    3.China North Industries Co. ,Ltd (NORINCO),Beijing  100053,China

Received date: 2024-01-25

  Revised date: 2024-02-21

  Accepted date: 2024-03-20

  Online published: 2024-04-03

摘要

飞行条件下固体火箭发动机常经历复杂过载情况,其内弹道骤然抬升或振荡偶有发生。为研究动态过载条件下固体火箭发动机燃烧室内压强特性,根据Greatrix燃速增强模型和考虑燃面退移的零维内弹道模型获得了过载与推进剂燃面质量流量关系曲线;基于该关系对柱锥内孔装药进行了复合过载下的内流场仿真,研究了横向过载加速度、横向振动及振动频率对发动机动态压强特性和旋涡流动的影响。结果表明,随着横向过载加速度与横向振动的增大,燃烧室内平衡压强抬升和压强振荡幅值随之增大,在工作压强为10.54 MPa时加速度每增加1g,横向过载加速度能提高0.02%压强振幅及0.35%平衡压强;横向振动频率从7 Hz上升至320 Hz过程中,压强振荡幅值逐渐减小,但在燃烧室声腔固有频率附近会因共振作用被放大,一阶共振(160 Hz)使压强振幅从0.16%提高到0.30%,为原振幅2倍;当复合过载频率与燃烧室声腔共振时,能量从推进剂表面传递进入燃烧室的过程更为有序。

本文引用格式

艾诗迪 , 李军伟 , 田忠亮 , 韩磊 , 王宁飞 . 横向复合过载下固体火箭发动机压强振荡[J]. 航空学报, 2024 , 45(22) : 130233 -130233 . DOI: 10.7527/S1000-6893.2024.30233

Abstract

Solid rocket motors often experience complex overload conditions during flight, and sudden internal ballistic lift or oscillations occur occasionally. To study the pressure characteristics in the combustion chamber of solid rocket motors under dynamic overload conditions, the relationship curves between overload and mass flow rate of the propellant combustion surface are obtained using the Greatrix burning rate enhancement model and the zero-dimensional internal ballistic model considering the combustion surface recession. Based on the relationship, simulation of the internal flow field for a cylindrical cone bore charge is carried out under composite overload. The effects of lateral overload acceleration, lateral vibration and vibration frequency on the dynamic characteristics of the motor and vortex flow are investigated. The results show that with the increase of lateral overload acceleration and lateral vibration, the equilibrium pressure rises and pressure oscillation amplitude in the combustion chamber increases, and the lateral overload acceleration can increase the pressure amplitude and equilibrium pressure by 0.02% and 0.35%, respectively, with per 1g increase in acceleration at the working pressure of 10.54 MPa. As the lateral vibration frequency rises from 7 to 320 Hz, the amplitude of pressure oscillation decreases. But it is amplified by resonance near the intrinsic frequency of the combustion chamber acoustic cavity, and the first-order resonance (160 Hz) raises the amplitude of the pressure from 0.16% to 0.30%, which is twice the original amplitude. When the composite overload frequency resonates with the combustion chamber acoustic cavity, the energy transfer from the propellant surface into the combustion chamber is more orderly.

参考文献

1 唐金兰, 刘佩进. 固体火箭发动机原理[M]. 北京: 国防工业出版社, 2013.
  TANG J L, LIU P J. Principle of solid rocket engine[M]. Beijing: National Defense Industry Press, 2013 (in Chinese).
2 李桢. 横向过载下固体火箭发动机工作过程研究[D]. 长沙: 国防科学技术大学, 2005.
  LI Z. Study on working process of solid rocket motor under lateral overload[D]. Changsha: National University of Defense Technology, 2005 (in Chinese).
3 崔立堃. 过载状态下固体火箭发动机内流场数值计算[J]. 战术导弹技术2017(3): 98-103.
  CUI L K. Numerical simulation of flow field in the solid rocket motor under overload conditions[J]. Tactical Missile Technology2017(3): 98-103 (in Chinese).
4 张为华, 曹泰岳, 万章吉. 固体火箭发动机旋转对燃速的影响[J]. 航空动力学报19949(1): 67-70.
  ZHANG W H, CAO T Y, WAN Z J. Effect of solid rocket motor rotation on combustion velocity[J]. Journal of Aerospace Power19949(1): 67-70 (in Chinese).
5 李翔. 发动机过载试验技术研究[J]. 航空兵器200815(1): 34-37.
  LI X. Research on motor overload test technology[J]. Aero Weaponry200815(1): 34-37 (in Chinese).
6 张翔宇, 高波, 甘晓松, 等. 飞行过载对固体火箭发动机不稳定燃烧的影响[J]. 宇航学报201940(8): 972-976.
  ZHANG X Y, GAO B, GAN X S, et al. Impacts of flight acceleration on combustion instability of solid rocket motor[J]. Journal of Astronautics201940(8): 972-976 (in Chinese).
7 WU Y, HE G Q, SUN Z P, et al. Experiment study of effects induced by overload on SRM performance[J]. Journal of Solid Rocket Technology201033(5): 511-514.
8 苗琳. 过载与旋转对SRM内两相流场影响数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2018.
  MIAO L. Numerical analysis of the influence of overload and rotation on two-phase flow field in SRM[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
9 那旭东, 夏智勋, 马立坤, 等. 长时间小过载情况下固体火箭发动机两相流流场数值模拟[J]. 固体火箭技术201841(6): 694-701.
  NA/NUO) X D, XIA Z X, MA L K, et al. Numerical simulation of two-phase flow field under low acceleration with long operation time conditions for solid rocket motor[J]. Journal of Solid Rocket Technology201841(6): 694-701 (in Chinese).
10 顾兴鹏, 李军伟, 乔文生, 等. 固相颗粒在C1xb固体火箭发动机中的运动规律[J]. 兵工学报202243(3): 489-502.
  GU X P, LI J W, QIAO W S, et al. Motion trajectory of solid particles in C1xb solid rocket motor[J]. Acta Armamentarii202243(3): 489-502 (in Chinese).
11 MALLOUPPAS G, VAN WACHEM B. Large eddy simulations of turbulent particle-laden channel flow[J]. International Journal of Multiphase Flow201354: 65-75.
12 MASON D R, MORSTADT R, CANNON S M, et al. Pressure oscillations and structural vibrations in space shuttle RSRM and ETM-3 motors: AIAA-2004-3898 [R]. Reston: AIAA, 2004
13 CAVALLINI E, FAVINI B, CASTELLI M, et al. VEGA launch vehicle dynamic loads due to solid propulsion ignition transients and pressure oscillations[C]∥Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016.
14 HAN L, LI J W, WANG Y B, et al. Study on combustion oscillation characteristics of micron aluminum particles[J]. Powder Technology2021394: 782-790.
15 刘中兵,郜伟伟. 固体发动机飞行横向过载下绝热层烧蚀探究[J]. 固体火箭技术201841(4): 37-42.
  LIU Z B, GAO W W, et al. Insulation ablation of solid rocket motors under flight transverse accelerations [J]. Journal of Solid Rocket Technology201841(4): 37-42 (in Chinese).
16 吴雄岗, 李笑江, 宋桂贤, 等. 铝粉粒径对改性双基推进剂燃烧性能的影响[J]. 火炸药学报201033(3): 80-83.
  WU X G, LI X J, SONG G X, et al. Effects of aluminum powder diameters on the combustion performance of CMDB propellant[J]. Chinese Journal of Explosives & Propellants201033(3): 80-83 (in Chinese).
17 LAURETI M, ROSSI G, FAVINI B. Correction: Aeroacoustics of aft-finocyl solid rocket motors[C]∥Proceedings of the 2018 Joint Propulsion Conference. Reston: AIAA, 2018.
18 CROWE C, WILLOUGHBY P. Effect of spin on the internal ballistics of a solid propellant motor[C]∥Proceedings of the 3rd and 4th Aerospace Sciences Meeting. Reston: AIAA, 1966.
19 WILLOUGHBY P G, CROWE C T, BAKER K L. A photographic and analytic study of composite propellant combustion in an acceleration field[J]. Journal of Spacecraft and Rockets19718(4): 310-317.
20 GREATRIX D. Acceleration-based combustion augmentation modelling for noncylindrical grain solid rocket motors[C]∥Proceedings of the 31st Joint Propulsion Conference and Exhibit. Reston: AIAA, 1995.
21 GREATRIX D R. Powered flight: The engineering of aerospace propulsion[M]. London: Springer-Verlag, 2012: 371-373.
22 官典, 李世鹏, 刘筑, 等. 横向过载对固体火箭发动机推进剂点火建压过程的影响[J]. 兵工学报202142(9): 1877-1887.
  GUAN D, LI S P, LIU Z, et al. Influence of lateral acceleration on ignition transients of solid rocket motor[J]. Acta Armamentarii202142(9): 1877-1887 (in Chinese).
23 田忠亮, 李军伟, 贺业, 等. 横向过载下锥孔三维药柱的内弹道特性[J]. 兵工学报202344(7): 1896-1907.
  TIAN Z L, LI J W, HE Y, et al. Analysis of interior ballistic characteristics of conical three-dimensional charge column under lateral overload[J]. Acta Armamentarii202344(7): 1896-1907 (in Chinese).
24 覃生福, 李军伟, 张智慧, 等. 旋转对固体火箭发动机两相流点火过程影响仿真研究[J]. 航空动力学报202237(7): 13.
  QIN S F, LI J W, ZHANG Z H, et al. Simulation study on the influence of spin on ignition process of two-phase in solid rocket motor[J]. Journal of Aerospace Power202237(7): 13 (in Chinese).
25 游艳峰, 吴治昌, 张雷岳, 等. 大过载对固体火箭发动机粒子阻尼的影响[J]. 推进技术202243(4): 210087.
  YOU Y F, WU Z C, ZHANG L Y, et al. Large overload effects on particle damping in SRM[J]. Journal of Propulsion Technology202243(4): 210087 (in Chinese).
26 苏万兴. 大长径比固体火箭发动机不稳定燃烧预示及抑制方法研究[D]. 北京: 北京理工大学, 2015.
  SU W X. Study on prediction and suppression of unstable combustion of solid rocket motor with large length-diameter ratio[D]. Beijing: Beijing Institute of Technology, 2015 (in Chinese).
27 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报202038(3): 413-431, 478.
  LIU C Q. Liutex-third generation of vortex definition and identification methods?[J]. Acta Aerodynamica Sinica202038(3): 413-431, 478 (in Chinese).
28 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报201836(2): 163-179.
  KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica201836(2): 163-179 (in Chinese).
29 LI Y J, HONG K, ZHOU C Y, et al. Vibration energy transfer in a forced oscillation fluidized bed[J]. Chemical Engineering Journal2023478: 147532.
30 洪志亮, 薛力, 付怡磊, 等. 流-声-固耦合诱发结构振动及其抑制的实验研究[J]. 航空学报, (2024-02-07) [2024-03-15]. .
  HONG Z L, XUE L, FU Y L, et al. Experimental investigation on structural vibration induced by fluid-acoustic-structure coupling and its suppression [J]. Acta Aeronautica et Astronautica Sinica, (2024-02-07) [2024-03-15]. (in Chinese).
31 CHEN L J, GAO Y, WANG D P, et al. Numerical simulation on acoustic mode and pressure-oscillation decay in finocyl-and axil-grain combustion chambers[J]. Aerospace Science and Technology2020107: 106351.
文章导航

/