深空光电测量与智能感知技术专栏

基于频率-时间映射的微波光子频率测量技术

  • 王璐 ,
  • 王立 ,
  • 李林 ,
  • 郭绍刚 ,
  • 郑然 ,
  • 张恒康
展开
  • 北京控制工程研究所 空间光电测量与感知实验室,北京 100190
E-mail: wupeng3992@163.com

收稿日期: 2023-11-13

  修回日期: 2023-12-22

  录用日期: 2024-02-02

  网络出版日期: 2024-02-23

基金资助

国家自然科学基金(52275083)

Microwave photonic frequency measurement technology based on frequency-to-time mapping

  • Lu WANG ,
  • Li WANG ,
  • Lin LI ,
  • Shaogang GUO ,
  • Ran ZHENG ,
  • Hengkang ZHANG
Expand
  • Space Optoelectronic Measurement and Perception Lab,Beijing Institute of Control Engineering,Beijing 100190,China
E-mail: wupeng3992@163.com

Received date: 2023-11-13

  Revised date: 2023-12-22

  Accepted date: 2024-02-02

  Online published: 2024-02-23

Supported by

National Natural Science Foundation of China(52275083)

摘要

微波信号的频率测量在航空航天等领域中具有广泛的应用需求。传统的基于纯电子学手段的频率测量方案频率范围和带宽受限,难以实现对高频率、大带宽信号的测量。微波光子技术能够结合光子技术和微波技术的各自优势,具有大带宽、高载频、低损耗、抗电磁干扰和高分析精度等特点,可实现高性能的微波信号频率测量。系统性地综述了基于频率-时间映射机理的微波光子频率测量技术,介绍了频率-时间映射的基本原理,并对基于色散介质和不同种类扫频组件的频率-时间映射方案进行了详细介绍,最后对该领域的发展进行了总结和展望。

本文引用格式

王璐 , 王立 , 李林 , 郭绍刚 , 郑然 , 张恒康 . 基于频率-时间映射的微波光子频率测量技术[J]. 航空学报, 2025 , 46(3) : 629873 -629873 . DOI: 10.7527/S1000-6893.2024.29873

Abstract

Frequency measurement of microwave signals has a wide range of applications in the fileds such as aerospace and electronic system. The traditional frequency measurement scheme based on the electronic method has limited frequency range and bandwidth, making it difficult to measure the signals with high frequency and large bandwidth. The microwave photonic technology can combine the advantages of optical and microwave technologies in terms of large bandwidth, high center frequency, low loss, anti-electromagnetic interference as well as high accuracy, and can achieve microwave frequency measurement with good performance. This article reviews the microwave photonic frequency measurement methods based on frequency-to-time mapping. The basic principles are provided, and detailed introduction to the frequency-to-time mapping schemes based on dispersive media and different types of scanning components are given. Finally, a discussion of the future development is provided.

参考文献

1 EAST P W. Fifty years of instantaneous frequency measurement[J]. IET Radar, Sonar & Navigation, 20126(2): 112-122.
2 邹喜华, 卢冰. 基于光子技术的微波频率测量研究进展[J]. 数据采集与处理201429(6): 885-894.
  ZOU X H, LU B. Advances in microwave frequency measurement using photonic[J]. Journal of Data Acquisition and Processing201429(6): 885-894 (in Chinese).
3 吴伟仁, 黄磊, 节德刚, 等. 嫦娥二号工程X频段测控通信系统设计与试验[J]. 中国科学(信息科学)201141(10): 1171-1183.
  WU W R, HUANG L, JIE D G, et al. Design and experiment of X-band TT & C system for the project of CE-2[J]. Scientia Sinica (Informationis)201141(10): 1171-1183 (in Chinese).
4 邓伏虎. 基于二维分区的深空频率捕获算法仿真及设计[D]. 成都: 电子科技大学, 2009.
  DENG F H. Simulation and design of deep space frequency acquisition algorithm based on two-dimensional partition[D]. Chengdu: University of Electronic Science and Technology of China, 2009 (in Chinese).
5 Keysight. Real-Time Spectrum Analyzers (RTSA) [EB/OL]. ?.
6 ZOU X H, LU B, PAN W, et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews201610(5): 711-734.
7 CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics20071: 319-330.
8 CHI H, ZOU X H, YAO J P. An approach to the measurement of microwave frequency based on optical power monitoring[J]. IEEE Photonics Technology Letters200820(14): 1249-1251.
9 LI Z, WANG C, LI M, et al. Instantaneous microwave frequency measurement using a special fiber Bragg grating[J]. IEEE Microwave and Wireless Components Letters201121(1): 52-54.
10 FANDI?O J S, MU?OZ P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter[J]. Optics Letters201338(21): 4316-4319.
11 FENG D Q, XIE H, QIAN L F, et al. Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber[J]. Optics Express201523(13): 17613-17621.
12 LIU L, JIANG F, YAN S Q, et al. Photonic measurement of microwave frequency using a silicon microdisk resonator[J]. Optics Communications2015335: 266-270.
13 PAGANI M, MORRISON B, ZHANG Y B, et al. Low-error and broadband microwave frequency measurement in a silicon chip[J]. Optica20152(8): 751.
14 NGUYEN L V T, HUNTER D B. A photonic technique for microwave frequency measurement[J]. IEEE Photonics Technology Letters200618(10): 1188-1190.
15 ZOU X H, YAO J P. An optical approach to microwave frequency measurement with adjustable measurement range and resolution[J]. IEEE Photonics Technology Letters200820(23): 1989-1991.
16 ZHANG X M, CHI H, ZHANG X M, et al. Instantaneous microwave frequency measurement using an optical phase modulator[J]. IEEE Microwave and Wireless Components Letters200919(6): 422-424.
17 ATTYGALLE M, HUNTER D B. Improved photonic technique for broadband radio-frequency measurement[J]. IEEE Photonics Technology Letters200921(4): 206-208.
18 ZOU X H, PAN S L, YAO J P. Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation[J]. Journal of Lightwave Technology200927(23): 5314-5320.
19 ZHOU J Q, FU S N, ADITYA S, et al. Instantaneous microwave frequency measurement using photonic technique[J]. IEEE Photonics Technology Letters200921(15): 1069-1071.
20 SHI N N, GU Y Y, HU J J, et al. Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy[J]. Optics Communications2014328: 87-90.
21 JIANG H Y, MARPAUNG D, PAGANI M, et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica20163(1): 30.
22 LI Y Q, PEI L, LI J, et al. Theory study on a range-extended and resolution-improved microwave frequency measurement[J]. Journal of Modern Optics201663(7): 613-620.
23 EMAMI H, ASHOURIAN M. Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing[J]. IEEE Transactions on Microwave Theory and Techniques201462(10): 2462-2470.
24 NGUYEN L V T. Microwave photonic technique for frequency measurement of simultaneous signals[J]. IEEE Photonics Technology Letters200921(10): 642-644.
25 NGUYEN T A, CHAN E H W, MINASIAN R A. Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure[J]. Journal of Lightwave Technology201432(20): 3831-3838.
26 NGUYEN T A, CHAN E H W, MINASIAN R A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique[J]. Optics Letters201439(8): 2419-2422.
27 LI R Y, CHEN H W, LEI C, et al. Optical serial coherent analyzer of radio-frequency (OSCAR)[J]. Optics Express201422(11): 13579-13585.
28 YE C H, FU H Y, ZHU K, et al. All-optical approach to microwave frequency measurement with large spectral range and high accuracy[J]. IEEE Photonics Technology Letters201224(7): 614-616.
29 ZHOU F, CHEN H, WANG X, et al. Photonic multiple microwave frequency measurement based on frequency-to-time mapping[J]. IEEE Photonics Journal201810(2): 5500807.
30 WINNALL S T, LINDSAY A C. A Fabry-Perot scanning receiver for microwave signal processing[J]. IEEE Transactions on Microwave Theory and Techniques199947(7): 1385-1390.
31 RUGELAND P, YU Z, STERNER C, et al. Photonic scanning receiver using an electrically tuned fiber Bragg grating[J]. Optics Letters200934(24): 3794-3796.
32 WANG X, ZHOU F, GAO D S, et al. Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter[J]. Photonics Research20197(2): 172.
33 HAO T F, TANG J, LI W, et al. Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator[J]. Optics Express201826(26): 33582-33591.
34 HAO T F, TANG J, SHI N N, et al. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold[J]. Optics Letters201944(12): 3062-3065.
35 WANG L, HAO T F, GUAN M Y, et al. Compact multi-tone microwave photonic frequency measurement based on a single modulator and frequency-to-time mapping[J]. Journal of Lightwave Technology202240(19): 6517-6522.
36 ZHENG S L, GE S X, ZHANG X M, et al. High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters201224(13): 1115-1117.
37 XIAO Y C, GUO J, WU K, et al. Multiple microwave frequencies measurement based on stimulated Brillouin scattering with improved measurement range[J]. Optics Express201321(26): 31740-31750.
38 WU K, LI J Q, ZHANG Y D, et al. Multiple microwave frequencies measurement based on stimulated Brillouin scattering with ultra-wide range[J]. Optik-International Journal for Light and Electron Optics2015126(19): 1935-1940.
39 JIAO W T, YOU K, SUN J Q. Multiple microwave frequency measurement with improved resolution based on stimulated Brillouin scattering and nonlinear fitting[J]. IEEE Photonics Journal201911(1): 5500912.
40 LIU J L, SHI T X, CHEN Y. High-accuracy multiple microwave frequency measurement with two-step accuracy improvement based on stimulated Brillouin scattering and frequency-to-time mapping[J]. Journal of Lightwave Technology202139(7): 2023-2032.
41 HAO T F, YANG Y, JIN Y Q, et al. Quantum microwave photonics[J]. Journal of Lightwave Technology202240(20): 6616-6625.
42 LI Z Y, WANG Z X, LUO H, et al. Weak RF signal detection based on single-mode optoelectronic oscillator[J]. IEEE Photonics Technology Letters202335(6): 313-316.
43 ZHANG X, PU T, ZHENG J L, et al. Low-power RF signal detection with wideband range based on an optically injected optoelectronic oscillator[J]. Optics Letters202247(3): 686-689.
44 WANG G Q, HAO T F, LI W, et al. Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator[J]. Optics Communications2019439: 133-136.
45 MARPAUNG D, YAO J P, CAPMANY J. Integrated microwave photonics[J]. Nature Photonics201913: 80-90.
46 TAO Y S, YANG F H, TAO Z H, et al. Fully on-chip microwave photonic instantaneous frequency measurement system[J]. Laser & Photonics Reviews202216(11): 2200158.
47 YAO Y H, ZHAO Y H, WEI Y X, et al. Highly integrated dual-modality microwave frequency identification system[J]. Laser & Photonics Reviews202216(10): 2200006.
文章导航

/