空间目标偶数重连续覆盖星座设计方法
收稿日期: 2023-09-22
修回日期: 2023-10-26
录用日期: 2023-12-22
网络出版日期: 2024-01-04
基金资助
航天科工集团应用创新项目(624010101)
A design method of even-fold continuous-coverage constellation for space targets
Received date: 2023-09-22
Revised date: 2023-10-26
Accepted date: 2023-12-22
Online published: 2024-01-04
Supported by
Application Innovation Project of Aerospace Science and Industry Corporation(624010101)
为满足对空间目标的多重连续覆盖需求,提出一种基于大角度探测范围的偶数重连续覆盖星座设计方法。首先,由大角度探测范围确定圆环形探测区域,并依此给出覆盖带设计方法。然后,基于覆盖带拼接的方式提出了空间目标偶数重连续覆盖星座设计方法。所提出的星座设计方法具有两大优势:一是该方法对基于覆盖带拼接的星座设计方法引入了有约束条件的参数优化方法,能够用尽可能少的卫星快速设计出偶数重连续覆盖星座;二是传感器探测区域选为圆环形,可拓展所提星座设计方法的适用范围。当传感器指向天时,所设计星座可实现高、中、低轨空间目标偶数重连续覆盖。当传感器指向地时,所提星座设计方法适用于任意纬度地面目标偶数重连续覆盖问题。仿真结果表明,所提星座设计方法简单有效,可快速用较少的卫星实现空间或地面目标偶数重连续覆盖。
肖广瀚 , 胡泽岩 , 刘军虎 , 王亮 , 毛青堂 . 空间目标偶数重连续覆盖星座设计方法[J]. 航空学报, 2024 , 45(14) : 229637 -229637 . DOI: 10.7527/S1000-6893.2023.29637
To meet the requirements of multi-fold continuous-coverage of space targets, a design method of even-fold continuous-coverage constellation based on the large angle detection range is proposed. Firstly, the ring detection area is determined by the large angle detection range, and a design method of the street of coverage is proposed. Then, a method of even-fold continuous-coverage constellation design for space targets is proposed based on the method of street of coverage splicing. The proposed constellation design method has two advantages. First, it introduces a constrained parameter optimization method for the constellation design method based on street of coverage splicing, which can quickly design an even-fold continuous-coverage constellations with as few satellites as possible. Second, the sensor detection area is selected as a ring, which can expand the application range of the proposed constellation design method. When the sensor points to the sky, the designed constellation can achieve even-fold continuous-coverage of high, medium and low orbit space targets. When the sensor points to the ground, the proposed method is also suitable for even-fold continuous-coverage of ground targets at any latitude. Simulation results show that the proposed constellation design method is simple and effective, and can quickly achieve even-fold continuous-coverage of space or ground targets with fewer satellites.
1 | 黎璐玫, 刘伟骏, 俞越. 空间碎片现状与挑战[J]. 中国无线电, 2023(8): 33-36. |
LI L M, LIU W J, YU Y. Current situation and challenges of space debris[J]. China Radio, 2023(8): 33-36 (in Chinese). | |
2 | 何英姿, 杜航, 张海博. 基于深度学习的非合作目标感知研究进展[J]. 飞控与探测, 2023, 6(1): 1-14. |
HE Y Z, DU H, ZHANG H B. Research progress of non-cooperative target intelligent perception based on deep learning[J]. Flight Control & Detection, 2023, 6(1): 1-14 (in Chinese). | |
3 | ZHANG H Y, ZHANG G, TIAN L F. Hybrid ground-space target visit problem with a coplanar impulse[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5849-5859. |
4 | ZHOU Y, YAN Y, HUANG X, et al. Mission planning optimization for the visual inspection of multiple geosynchronous satellites[J]. Engineering Optimization, 2015, 47(11): 1543-1563. |
5 | 左海, 郭洋, 吴洪亮, 等. 浅析“星链” 卫星系统的发展及其影响[J]. 通信与信息技术, 2022(): 57-59. |
ZUO H, GUO Y, WU H L, et al. Analysis on the development and influence of “star chain” satellite system[J]. Communication & Information Technology, 2022(Sup 2): 57-59 (in Chinese). | |
6 | 王学宇, 武坦然. OneWeb低轨道卫星系统及其军事应用分析[J]. 航天电子对抗, 2022, 38(4): 59-64. |
WANG X Y, WU T R. Analysis on OneWeb LEO satellite system and its military application[J]. Aerospace Electronic Warfare, 2022, 38(4): 59-64 (in Chinese). | |
7 | 柯知非, 黄石生, 李玉良, 等. 低轨大型遥感星座发展现状及其关键技术[J]. 航天返回与遥感, 2023, 44(1): 93-101. |
KE Z F, HUANG S S, LI Y L, et al. Research on the development status and key technologies of large LEO remote sensing constellations[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(1): 93-101 (in Chinese). | |
8 | 樊巍. 中国启动建设超低轨道卫星星座[N]. 环球时报, 2023-07-14(008). |
FAN W. China launched the construction of ultra-low orbit satellite constellation [N]. Global Times, 2023-07-14 (008) (in Chinese). | |
9 | 王刚, 左鹏, 洪涛, 等. 低轨卫星星座设计方法综述[C]∥第十八届卫星通信学术年会. 2022: 61-66. |
WANG G, ZUO P, HONG T, et al. Summary of low Earth orbit satellite constellation design methods[C]∥ 18th Annual Conference on Satellite Communication. 2022: 61-66 (in Chinese). | |
10 | WALKER J G. Some circular orbit patterns providing continuous whole Earth coverage[J]. Journal of the British Interplanetary Society, 1971, 24: 369-384. |
11 | LUDERS R D. Satellite networks for continuous zonal coverage[J]. ARS Journal, 1961, 31(2): 179-184. |
12 | DAI G M, CHEN X Y, WANG M C, et al. Analysis of satellite constellations for the continuous coverage of ground regions[J]. Journal of Spacecraft and Rockets, 2017, 54(6): 1294-1303. |
13 | 袁仕耿. 多重覆盖的定倾角最佳星座设计[J]. 中国空间科学技术, 1997, 17(4): 11-16, 57. |
YUAN S G. Optimal constellation design with multiple coverage and fixed inclination angle[J]. Chinese Space Science and Technology, 1997, 17(4): 11-16, 57 (in Chinese). | |
14 | 袁仕耿, 杨维廉. 圆轨道星座全球覆盖的充分必要条件[J]. 宇航学报, 1999, 20(3): 82-86. |
YUAN S G, YANG W L. Necessary and sufficient condition of global coverage for constellation using circular orbit[J]. Journal of Astronautics, 1999, 20(3): 82-86 (in Chinese). | |
15 | 龚宇鹏, 张世杰. 偶数重连续覆盖的Walker星座设计方法[J]. 宇航学报, 2022, 43(9): 1163-1175. |
GONG Y P, ZHANG S J. Design method for even-fold continuous-coverage Walker constellation[J]. Journal of Astronautics, 2022, 43(9): 1163-1175 (in Chinese). | |
16 | LANG T J, ADAMS W S. A comparison of satellite constellations for continuous global coverage[C]∥Mission Design & Implementation of Satellite Constellations. Dordrecht: Springer Netherlands, 1998: 51-62. |
17 | LIN C H, HONG Z C. Mission and constellation design for low-cost weather observation satellites[J]. Journal of Spacecraft and Rockets, 2005, 42(1): 118-123. |
18 | ZHU X L, GAO Y. Comparison of intelligent algorithms to design satellite constellations for enhanced coverage capability[C]∥2017 10th International Symposium on Computational Intelligence and Design (ISCID). Piscataway: IEEE Press, 2017: 223-226. |
19 | TAN C D, XU Y, LUO R D, et al. Low Earth orbit constellation design using a multi-objective genetic algorithm for GNSS reflectometry missions[J]. Advances in Space Research, 2023, 71(5): 2357-2369. |
20 | CUI J W, CHEN L H, YU S Q, et al. Global coverage constellation design for Internet of things using NSGAII algorithm[C]∥ Proceedings of the 2022 5th International Conference on Big Data and Internet of Things. New York: ACM, 2022: 88-95. |
21 | 孙杨雨茜, 乔栋, 张晨, 等. 天基星空背景观测覆盖范围计算方法研究[J]. 中国空间科学技术, 2022, 42(5): 133-143. |
SUNYANG Y Q, QIAO D, ZHANG C, et al. Calculation method of the coverage region for spaceborne observations above the horizon[J]. Chinese Space Science and Technology, 2022, 42(5): 133-143 (in Chinese). | |
22 | MARCHAND B G, KOBEL C J. Above the horizon satellite coverage with dual-altitude band constraints[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 845-857. |
23 | TAKANO A T, MARCHAND B G. Numerical coverage analysis for space-based space situational awareness applications[J]. Journal of Spacecraft and Rockets, 2014, 51(2): 533-544. |
24 | SUN Y, WEN C X, ZHANG C, et al. Above-the-horizon coverage for satellite constellations with dual-altitude band constraints using ring-based discretization[J]. Journal of Spacecraft and Rockets, 2022, 60(1): 132-145. |
25 | HANSON J M, LINDEN A N. Improved low-altitude constellation design methods[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(2): 228-236. |
26 | 乔鹏, 吕晓宁, 赵军锁, 等. 应用多星的空间目标跟踪定位算法[J]. 航天器工程, 2021, 30(5): 9-15. |
QIAO P, LYU X N, ZHAO J S, et al. Space target tracking and positioning algorithm using multi-satellites[J]. Spacecraft Engineering, 2021, 30(5): 9-15 (in Chinese). | |
27 | 龚宇鹏. 低轨巨型星座构型设计及覆盖分析方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
GONG Y P. Research on configuration design and coverage performance analysis of Leo mega-constellation[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese). | |
28 | ULYBYSHEV Y. Near-polar satellite constellations for continuous global coverage[J]. Journal of Spacecraft and Rockets, 1999, 36(1): 92-99. |
29 | 纪凡策. “柯伊柏” 星座介绍及与其他星座对比分析[J]. 国际太空, 2020(12): 27-31. |
JI F C. Introduction of Kuiper constellation and comparative analysis with other constellations[J]. Space International, 2020(12): 27-31 (in Chinese). |
/
〈 |
|
〉 |