集群智能与协同控制

基于端口哈密顿系统的无人机编队分布式控制

  • 郝文康 ,
  • 包素艳 ,
  • 陈琪锋
展开
  • 1.中南大学 自动化学院,长沙 410083
    2.北京航天万源科技有限公司,北京 100083
.E-mail: chenqifeng@csu.edu.cn

收稿日期: 2023-11-13

  修回日期: 2023-11-21

  录用日期: 2023-12-20

  网络出版日期: 2023-12-26

基金资助

国家自然科学基金(62073343)

Distributed control of UAVs formation based on port⁃Hamiltonian system

  • Wenkang HAO ,
  • Suyan BAO ,
  • Qifeng CHEN
Expand
  • 1.School of Automation,Central South University,Changsha 410083,China
    2.Beijing Aerospace Wanyuan Science & Technology Co. Ltd,Beijing 100083,China

Received date: 2023-11-13

  Revised date: 2023-11-21

  Accepted date: 2023-12-20

  Online published: 2023-12-26

Supported by

National Natural Science Foundation of China(62073343)

摘要

基于端口哈密顿系统理论和状态误差互联-阻尼无源控制方法,设计了一种适用于无人机(UAV)编队的分布式控制律。首先建立了分布式控制下的无人机编队状态误差模型;其次根据各无人机相对平衡状态的状态误差以及无人机之间的状态误差设计了系统期望的哈密顿能量函数;然后基于状态误差互联-阻尼的无源控制方法推导了无人机编队系统的控制律;最后对设计的控制律进行仿真验证,结果表明无人机编队在该控制律下能快速的稳定到期望队形,并在收敛时间和响应过程平稳性方面具有一定的性能优势。

本文引用格式

郝文康 , 包素艳 , 陈琪锋 . 基于端口哈密顿系统的无人机编队分布式控制[J]. 航空学报, 2023 , 44(S2) : 729868 -729868 . DOI: 10.7527/S1000-6893.2023.29868

Abstract

A distributed control law suitable for Unmanned Aerial Vehicle (UAV) formation is designed based on the port Hamiltonian system theory and the passivity-based control method of states error interconnection damping. Firstly, a states error model for UAVs formation under distributed control is established. Secondly, the expected Hamiltonian energy function of the system is designed based on the states error of the relative equilibrium state of each UAV and the states error between UAVs. Then, based on the passivity-based control method of states error interconnection damping, the control law of the UAVs formation system is derived. Finally, the designed control law is verified by simulation. The results show that the UAVs formation under this control law can be quickly stabilized to the expected formation, and has certain performance advantages in convergence time and response process stationarity.

参考文献

1 ZHANG J D, WANG W Y, ZHANG Z, et al. Cooperative control of UAV cluster formation based on distributed consensus[C]∥ 2019 IEEE 15th International Conference on Control and Automation (ICCA). Piscataway: IEEE Press, 2019: 788-793.
2 HUANG T P, HUANG D Q, WANG Z K, et al. Robust control for a quadrotor UAV based on linear quadratic regulator[C]∥ 2020 39th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2020: 6893-6898.
3 ZHANG Q H, FU M Y, ZHAI C Y, et al. Incremental nonlinear dynamic inversion control for quadrotor UAV with an angular accelerometer[C]∥ 2023 42nd Chinese Control Conference (CCC). Piscataway: IEEE Press, 2023: 657-662.
4 LIU Z C, ZHANG Y F, LIANG J J, et al. Application of the improved incremental nonlinear dynamic inversion in fixed-wing UAV flight tests[J]. Journal of Aerospace Engineering202235(6): 0402209.
5 ZHANG J L, ZHANG P, YAN J G. Distributed adaptive finite-time compensation control for UAV swarm with uncertain disturbances[J]. IEEE Transactions on Circuits and Systems I: Regular Papers202168(2): 829-841.
6 FU X J, HE J H. Robust adaptive sliding mode control based on iterative learning for quadrotor UAV[J]. IETE Journal of Research202369(8): 5484-5496.
7 王新民, 王晓燕, 肖堃. 无人机编队飞行技术[M]. 西安: 西北工业大学出版社, 2015: 172-173.
  WANG X M, WANG X Y, XIAO K. UAVs formation flying technology[M]. Xi’an: Northwestern Polytechnical University Press, 2015: 172-173 (in Chinese).
8 FAHMI J M, WOOLSEY C A. Port-Hamiltonian flight control of a fixed-wing aircraft[J]. IEEE Transactions on Control Systems Technology202230(1): 408-415.
9 VAN DER SCHAFT A, JELTSEMA D. Port-Hamiltonian systems theory: An introductory overview[M]. Hanover: Now Publishers Inc, 2014: 1-6.
10 STACEY G, MAHONY R. A port-Hamiltonian approach to formation control using bearing measurements and range observers[C]∥ 52nd IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2013: 7641-7646.
11 VAN DER SCHAFT A. L2-gain and passivity techniques in nonlinear control[M]. Cham: Springer International Publishing, 2017.
12 ORTEGA R, VAN DER SCHAFT A, MASCHKE B, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[J]. Automatica200238(4): 585-596.
13 ORTEGA R, GARCíA-CANSECO E. Interconnection and damping assignment passivity-based control: A survey[J]. European Journal of Control200410(5): 432-450.
14 LV C X, YU H S, CHEN J, et al. Trajectory tracking control for unmanned surface vessel with input saturation and disturbances via robust state error IDA-PBC approach[J]. Journal of the Franklin Institute2022359(5): 1899-1924.
15 RASHAD R, CALIFANO F, STRAMIGIOLI S. Port-Hamiltonian passivity-based control on SE(3) of a fully actuated UAV for aerial physical interaction near-hovering[J]. IEEE Robotics and Automation Letters20194(4): 4378-4385.
16 YüKSEL B, SECCHI C, BüLTHOFF H H, et al. Aerial physical interaction via IDA-PBC[J]. International Journal of Robotics Research201938(4): 403-421.
17 FARID Y, RUGGIERO F. Finite-time disturbance reconstruction and robust fractional-order controller design for hybrid port-Hamiltonian dynamics of biped robots[J]. Robotics and Autonomous Systems2021144: 103836.
18 傅保增. 端口受控Hamilton系统的主动抗干扰控制研究[D]. 南京: 东南大学, 2019: 1-12.
  FU B Z. Research on active anti-disturbance control for port-controlled Hamiltonian systems[D]. Nanjing: Southeast University, 2019: 1-12. (in Chinese)
19 CARLETTA S. Dynamics and control of satellite formations invariant under the zonal harmonic perturbation[J]. Applied Sciences202313(8): 4969.
20 LV C X, YU H S, XU T, et al. State error PCH trajectory tracking control of an unmanned surface vehicle[C]∥ 2018 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2018: 3908-3912.
21 REN W. Multi-vehicle consensus with a time-varying reference state[J]. Systems & Control Letters200756(7-8): 474-483.
22 WU Y, GOU J Z, HU X T, et al. A new consensus theory-based method for formation control and obstacle avoidance of UAVs[J]. Aerospace Science and Technology2020107: 106332.
23 赵超轮, 戴邵武, 赵国荣, 等. 基于分布式模型预测控制的无人机编队控制[J]. 控制与决策202237(7): 1763-1771.
  ZHAO C L, DAI S W, ZHAO G R, et al. Formation control of multi-UAV based on distributed model predictive control algorithm[J]. Control and Decision202237(7): 1763-1771 (in Chinese).
文章导航

/