仅使用距离量测的多无人机协同环绕未知目标
收稿日期: 2023-09-05
修回日期: 2023-10-07
录用日期: 2023-12-11
网络出版日期: 2023-12-18
基金资助
国家自然科学基金(62173277);陕西省自然科学基金(2023-JC-YB-526);航空科学基金(20220058053002)
Cooperative circumnavigating of unknown target by multi-UAV using only distance measurements
Received date: 2023-09-05
Revised date: 2023-10-07
Accepted date: 2023-12-11
Online published: 2023-12-18
Supported by
National Natural Science Foundation of China(62173277);Natural Science Foundation of Shaanxi Province(2023-JC-YB-526);Aeronautical Science Foundation of China(20220058053002)
针对全球定位系统(GPS)拒止环境下多架无人机(UAV)对未知目标的协同环绕导航控制问题,提出了一种仅使用距离量测的分布式控制器。与现有的多数算法不同,该控制器不需要无人机及目标的位置信息。首先假设实际距离和距离变化率可用的情况下,设计了一种制导控制器驱动单架无人机环绕目标运动。其次利用二阶滑模观测器在有限时间内完成距离变化率的估计来代替实际距离变化率。观测器的设计使用实际距离量测信息,使得无人机仅利用距离量测即可完成环绕任务。然后在距离环绕控制器的基础上,利用有限时间观测器和距离量测信息完成相对位置估计,进而设计速度协调算法来实现多架无人机对目标的均匀环绕。最后,通过数字仿真和半实物(HIL)仿真验证了方法的有效性。
黄山 , 吕永玺 , 朱奇 , 李珂澄 , 史静平 . 仅使用距离量测的多无人机协同环绕未知目标[J]. 航空学报, 2024 , 45(13) : 329535 -329535 . DOI: 10.7527/S1000-6893.2023.29535
This paper proposes a distributed controller that utilizes only distance measurements to address the problem of cooperative circumnavigating an unknown target by Multi-Unmanned Aerial Vehicle (UAV) in a Global Position System (GPS) denial environment. Unlike most existing algorithms, this controller does not require location information of UAV and target. Firstly, a novel guidance control algorithm is designed to drive a single UAV to circle around the target by assuming that the actual distance measurement and the distance rate measurement are available. Secondly, a second-order sliding mode observer is utilized to complete the estimation of the distance rate in a finite time instead of the distance rate measurement. The observer is designed by using distance measurement information, allowing the UAV to complete the circumnavigation mission using only distance measurement. Then, on the basis of the designed distance circling controller, the finite time observer and the distance measurement information are used to complete the relative position estimation, and then a velocity coordination algorithm is developed to realize the uniform circumnavigation of the target by multiple UAVs. Finally, the numerical and Hardware-in-the-Loop (HIL) simulation results verify the effectiveness of the proposed method.
1 | WANG Z, LIU L, LONG T, et al. Multi-UAV reconnaissance task allocation for heterogeneous targets using an opposition-based genetic algorithm with double-chromosome encoding[J]. Chinese Journal of Aeronautics, 2018, 31(2): 339-350. |
2 | ZHEN Z Y, ZHU P, XUE Y X, et al. Distributed intelligent self-organized mission planning of multi-UAV for dynamic targets cooperative search-attack[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2706-2716. |
3 | WANG J, WU Y X, CHEN Y Q, et al. Multi-UAVs collaborative tracking of moving target with maximized visibility in urban environment[J]. Journal of the Franklin Institute, 2022, 359(11): 5512-5532. |
4 | WANG Y X, WANG H L, WU J F, et al. UAV standoff tracking for narrow-area target in complex environment[J]. IEEE Systems Journal, 2022, 16(3): 4583-4594. |
5 | HUANG S, LYU Y X, SHI J P, et al. Standoff tracking of an unknown object with only distance measurements[J]. Aerospace Science and Technology, 2023, 132: 108066. |
6 | 张春燕, 盛安冬, 戚国庆, 等. 基于反步法的有限时间机器人环航控制器设计[J]. 自动化学报, 2019, 45(3): 540-552. |
ZHANG C Y, SHENG A D, QI G Q, et al. Finite-time standoff tracking control of moving target by means of backstepping for non-holonmic robot[J]. Acta Automatica Sinica, 2019, 45(3): 540-552 (in Chinese). | |
7 | SRINIVASU N, RATNOO A. Standoff target tracking using line-of-sight distance bifurcation[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(10): 1934-1945. |
8 | XU B W, ZHANG H T, MENG H F, et al. Moving target surrounding control of linear multiagent systems with input saturation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1705-1715. |
9 | SUMMERS T H, AKELLA M R, MEARS M J. Coordinated standoff tracking of moving targets: Control laws and information architectures[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 56-69. |
10 | FREW E W, LAWRENCE D A, MORRIS S. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(2): 290-306. |
11 | POTHEN A A, RATNOO A. Curvature-constrained Lyapunov vector field for standoff target tracking[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2729-2736. |
12 | KOKOLAKIS N M T, KOUSSOULAS N T. Robust standoff target tracking with finite-time phase separation under unknown wind[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(6): 1183-1198. |
13 | PARK S. Circling over a target with relative side bearing[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(6): 1454-1458. |
14 | PARK S. Guidance law for standoff tracking of a moving object[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11): 2948-2955. |
15 | KOKOLAKIS N M T, KOUSSOULAS N T. Coordinated standoff tracking of a ground moving target and the phase separation problem[C]∥2018 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2018: 473-482. |
16 | 赵长春, 梁浩全, 祝明, 等. 基于改进RPG方法的MUAVs协同目标跟踪[J]. 航空学报, 2016, 37(5): 1644-1656. |
ZHAO C C, LIANG H Q, ZHU M, et al. MUAVs coordinated standoff target tracking by improved RPG method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1644-1656 (in Chinese). | |
17 | ZHANG M, LIANG C Y, MEI J S. Robust guidance law for cooperative aerial target circumnavigation of UAVs based on composite system theory[J]. Aerospace Science and Technology, 2023, 140: 108439. |
18 | BRI?óN-ARRANZ L, SEURET A, PASCOAL A. Circular formation control for cooperative target tracking with limited information[J]. Journal of the Franklin Institute, 2019, 356(4): 1771-1788. |
19 | SHI L L, ZHENG R H, LIU M Q, et al. Distributed circumnavigation control of autonomous underwater vehicles based on local information[J]. Systems & Control Letters, 2021, 148: 104873. |
20 | MUSLIMOV T Z, MUNASYPOV R A. Adaptive decentralized flocking control of multi-UAV circular formations based on vector fields and backstepping[J]. ISA Transactions, 2020, 107: 143-159. |
21 | HE W, LI Z J, PHILIP CHEN C L. A survey of human-centered intelligent robots: Issues and challenges[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 602-609. |
22 | ZHENG R H, LIN Z Y, FU M Y, et al. Distributed control for uniform circumnavigation of ring-coupled unicycles[J]. Automatica (Journal of IFAC), 2015, 53(C): 23-29. |
23 | YU X, XU X, LIU L, et al. Circular formation of networked dynamic unicycles by a distributed dynamic control law[J]. Automatica, 2018, 89: 1-7. |
24 | JAIN P, PETERSON C K, BEARD R W. Encirclement of moving targets using noisy range and bearing measurements[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1399-1414. |
25 | ZOU Y, WANG L, MENG Z Y. Distributed localization and circumnavigation algorithms for a multiagent system with persistent and intermittent bearing measurements[J]. IEEE Transactions on Control Systems Technology, 2021, 29(5): 2092-2101. |
26 | LI R, SHI Y J, SONG Y D. Localization and circumnavigation of multiple agents along an unknown target based on bearing-only measurement: A three dimensional solution[J]. Automatica (Journal of IFAC), 2018, 94(C): 18-25. |
27 | SEN A, SAHOO S R, KOTHARI M. Circumnavigation on multiple circles around a nonstationary target with desired angular spacing[J]. IEEE Transactions on Cybernetics, 2021, 51(1): 222-232. |
28 | CHEN K, QI G Q, LI Y Y, et al. Finite-time target localization and multicircular circumnavigation with bearing-only measurements[J]. Journal of the Franklin Institute, 2023, 360(9): 6338-6356. |
29 | ZOU Y, YANG W F, HE W, et al. Coordinate-free distributed localization and circumnavigation for nonholonomic vehicles without position information[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 2523-2534. |
30 | CHEN K, QI G Q, LI Y Y, et al. Cooperative localization and circumnavigation of multiple targets with bearing-only measurements[J]. Journal of the Franklin Institute, 2023, 360(12): 9159-9179. |
31 | 张民, 田鹏飞, 陈欣. 一种无人机定距盘旋跟踪制导律及稳定性证明[J]. 航空学报, 2016, 37(11): 3425-3434. |
ZHANG M, TIAN P F, CHEN X. UAV guidance law for circumnavigating and tracking ground target and its stability proof[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3425-3434 (in Chinese). | |
32 | WANG J, MA B L, YAN K. Mobile robot circumnavigating an unknown target using only range rate measurement[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(2): 509-513. |
33 | MILUTINOVI? D, CASBEER D, CAO Y C, et al. Coordinate frame free Dubins vehicle circumnavigation using only range-based measurements[J]. International Journal of Robust and Nonlinear Control, 2017, 27(16): 2937-2960. |
34 | DONG F, YOU K Y, SONG S J. Target encirclement with any smooth pattern using range-based measurements[J]. Automatica, 2020, 116: 108932. |
35 | MATVEEV A S, SEMAKOVA A A. Range-only-based three-dimensional circumnavigation of multiple moving targets by a nonholonomic mobile robot[J]. IEEE Transactions on Automatic Control, 2018, 63(7): 2032-2045. |
36 | CAO Y C. UAV circumnavigating an unknown target under a GPS-denied environment with range-only measurements[J]. Automatica, 2015, 55: 150-158. |
37 | DONG F, YOU K Y, XIE L H, et al. Coordinate-free circumnavigation of a moving target via a PD-like controller[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2012-2025. |
38 | PENG X H, GUO K X, LI X, et al. Cooperative moving-target enclosing control for multiple nonholonomic vehicles using feedback linearization approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(8): 4929-4935. |
39 | CAO Y C, CASBEER D, MILUTINOVIC D, et al. Collective circular motion and cooperative circumnavigation for nonholonomic mobile robots using range-based measurements. Reston: AIAA-2016-2104[R]. Reston: AIAA, 2016. |
40 | JIA J B, CHEN X, WANG W Z, et al. Distributed control of target cooperative encirclement and tracking using range‐based measurements[J]. Asian Journal of Control, 2023, 25(6): 4595-4608. |
41 | MORENO J A, OSORIO M. Strict Lyapunov functions for the super-twisting algorithm[J]. IEEE Transactions on Automatic Control, 2012, 57(4): 1035-1040. |
42 | MILUTINOVI? D, CASBEER D, CAO Y C, et al. Coordinate frame free Dubins vehicle circumnavigation[C]∥2014 American Control Conference. Piscataway: IEEE Press, 2014: 891-896. |
43 | ANDERSON B. Exponential stability of linear equations arising in adaptive identification[J]. IEEE Transactions on Automatic Control, 1977, 22(1): 83-88. |
44 | PANTELEY E, LORIA A. On global uniform asymptotic stability of nonlinear time-varying systems in cascade[J]. Systems & Control Letters, 1998, 33(2): 131-138. |
45 | BENABDALLAH A, DLALA M, HAMMAMI M ALI. A new Lyapunov function for stability of time-varying nonlinear perturbed systems[J]. Systems & Control Letters, 2007, 56(3): 179-187. |
46 | KHALIL H K. Nonlinear systems[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2002: 139-144. |
/
〈 |
|
〉 |