综述

选区激光熔化制备难熔高熵合金研究现状与展望

  • 郭正华 ,
  • 陈正 ,
  • 曾一达 ,
  • 郭义乾 ,
  • 牛振华 ,
  • 杨子睿 ,
  • 李智勇 ,
  • 万骏武
展开
  • 1.南昌航空大学,南昌 330063
    2.南昌航空大学 航空制造工程学院,南昌 330063
    3.伯明翰大学 冶金工程学院,伯明翰 B15 2SE
    4.江西昌河航空工业有限公司,景德镇 333002
    5.江铃汽车股份有限公司,南昌 330000

收稿日期: 2023-09-04

  修回日期: 2023-10-08

  录用日期: 2023-11-21

  网络出版日期: 2023-12-07

基金资助

国家自然科学基金(52105451);江西省杰出青年基金(20232ACB214013);江西省重大科技研发专项(20194ABC28001);江西省重点研发计划(20212BBE51007)

Research status and prospects of refractory high-entropy alloys prepared by selective laser melting

  • Zhenghua GUO ,
  • Zheng CHEN ,
  • Yida ZENG ,
  • Yiqian GUO ,
  • Zhenhua NIU ,
  • Zirui YANG ,
  • Zhiyong LI ,
  • Junwu WAN
Expand
  • 1.Nanchang Hangkong University,Nanchang  330063,China
    2.School of Aeronautical Manufacturing Engineering,Nanchang Hangkong University,Nanchang  330063,China
    3.School of Metallurgy and Materials,University of Birmingham,Birmingham B15 2SE,United Kingdom
    4.Jiangxi Changhe Aviation Industry Co. ,Ltd,Jingdezhen  333002,China
    5.Jiangling Motors Corporation,Ltd,Nanchang  330000,China

Received date: 2023-09-04

  Revised date: 2023-10-08

  Accepted date: 2023-11-21

  Online published: 2023-12-07

Supported by

National Natural Science Foundation of China(52105451);Jiangxi Provincial Science Fund for Distinguished Young Scholars(20232ACB214013);Science and Technology Major Project of Jiangxi Province(20194ABC28001);Key Research and Development Program of Jiangxi Province(20212BBE51007)

摘要

难熔高熵合金(RHEAs)因具备高熔点、高硬度和高温相结构稳定性成为航空航天、海洋船舶和核能工业等领域的重要材料。本文对选区激光熔化(SLM)技术制备的不同体系RHEAs进行梳理,并对其微观组织、力学性能、残余应力和耐腐蚀性能进行分析。结果表明,SLM制备的RHEAs未改变其固有相(BCC相),且枝晶形貌为树枝晶、等轴晶、胞状晶等,晶粒尺寸较电弧熔炼平均减少80%~90%;细晶强化、固溶强化等强化机制有效提升了材料的力学性能;SLM技术在制备RHEAs时,热源的局部加热和冷却会造成残余应力积累,可通过工艺参数优化、母材预热等方法降低热应力;SLM可实现难熔元素均匀分布,减缓腐蚀介质侵蚀合金表面的速率,从而增强合金的耐蚀性能。

本文引用格式

郭正华 , 陈正 , 曾一达 , 郭义乾 , 牛振华 , 杨子睿 , 李智勇 , 万骏武 . 选区激光熔化制备难熔高熵合金研究现状与展望[J]. 航空学报, 2024 , 45(14) : 29518 -029518 . DOI: 10.7527/S1000-6893.2023.29518

Abstract

With advantages of high melting point, high hardness and high-temperature phase structure stability, Refractory High-Entropy Alloys (RHEAs) have become important materials in the fields of aerospace, marine and nuclear energy industries. This paper presents a systematic review of different systems of RHEAs prepared by Selective Laser Melting (SLM) technology, and analyses the microstructure, mechanical properties, residual stress and corrosion resistance of SLM. The results show that the RHEAs prepared by SLM have not changed the intrinsic phase (BCC phase), the dendritic crystal morphology is dendritic, equiaxed, and cytosolic, and the grain size has been reduced by an average of 80%–90% compared with that of conventional arc melting. The results also show strengthening mechanisms such as fine grain strengthening and solid solution strengthening caused by grain refinement effectively enhance the mechanical properties of the materials. In the preparation of RHEAs by SLM technology, the residual stress accumulation caused by local heating and cooling of the heat source can be reduced by optimizing the process parameters and preheating the base metal; SLM can achieve uniform distribution of refractory elements, and the refined grains can increase the grain boundary density, reduce intergranular corrosion, and enhance the corrosion resistance of the alloy.

参考文献

1 鲁一荻, 张骁勇, 侯硕, 等. 高熵合金的发展及工业应用展望[J]. 稀有金属材料与工程202150(1): 333-341.
  LU Y D, ZHANG X Y, HOU S, et al. Perspective on industrial applications and research progress of high-entropy alloys[J]. Rare Metal Materials and Engineering202150(1): 333-341 (in Chinese).
2 ZHEN Y Q, WANG K, XU G P, et al. Effect of in-situ nanoparticles induced by Ti addition on the microstructure and tribological properties of FeCrB alloys[J]. Journal of Materials Research and Technology202429: 5354-5368.
3 TRINK B, WEI?ENSTEINER I, UGGOWITZER P J, et al. Processing and microstructure-property relations of Al-Mg-Si-Fe crossover alloys[J]. Acta Materialia2023257: 119160.
4 WU D, HAO M Y, ZHANG T L, et al. Heterostructures enhance simultaneously strength and ductility of a commercial titanium alloy[J]. Acta Materialia2023257: 119182.
5 HE J Y, LIU W H, WANG H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia201462: 105-113.
6 YEH J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM201365(12): 1759-1771.
7 CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A2004375-377: 213-218.
8 YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials20046(5): 299-303.
9 庞景宇. 难熔中高熵合金微观结构、力学性能及变形机制研究[D]. 合肥: 中国科学技术大学, 2022.
  PANG J Y. Investigation on the microstructure, mechanical properties and deformation mechanisms of refractory medium/high entropy alloys[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese).
10 BOLTZMANN L. The second law of thermodynamics[M]∥MCGUINNESS B, ed. Theoretical Physics and Philosophical Problems. Dordrecht: Springer Netherlands, 1974: 13-32.
11 ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science201461: 1-93.
12 YEH J W, CHEN Y L, LIN S J, et al. High-entropy alloys—A new era of exploitation[J]. Materials Science Forum2007560: 1-9.
13 TUNG C C, YEH J W, SHUN T T, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J]. Materials Letters200761(1): 1-5.
14 LIU Y, LIU W, ZHOU Q Y, et al. An initio study of thermodynamic and fracture properties of CrFeCoNiMn x (0≤x≤3) high-entropy alloys[J]. Journal of Materials Research and Technology202217: 498-506.
15 LIN D Y, XU L Y, JING H Y, et al. A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle[J]. Additive Manufacturing202036: 101591.
16 DENG N, WANG J, WANG J X, et al. Effect of high magnetic field assisted heat treatment on microstructure and properties of AlCoCrCuFeNi high-entropy alloy[J]. Materials Letters2021303: 130540.
17 LIANG A Y, GOODELMAN D C, HODGE A M, et al. CoFeNiTi x and CrFeNiTi x high entropy alloy thin films microstructure formation[J]. Acta Materialia2023257: 119163.
18 GHOLIZADEH R, YOSHIDA S, BAI Y, et al. Global understanding of deformation behavior in CoCrFeMnNi high entropy alloy under high-strain torsion deformation at a wide range of elevated temperatures[J]. Acta Materialia2023243: 118514.
19 SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics201018(9): 1758-1765.
20 REN X Q, LI Y G, QI Y F, et al. Review on preparation technology and properties of refractory high entropy alloys[J]. Materials202215(8): 2931.
21 SRIKANTH M, ANNAMALAI A R, MUTHUCHAMY A, et al. A review of the latest developments in the field of refractory high-entropy alloys[J]. Crystals202111(6): 612.
22 ZHENG W J, Lü S L, WU S S, et al. Development of MoNbVTa x refractory high entropy alloy with high strength at elevated temperature[J]. Materials Science and Engineering: A2022850: 143554.
23 POLE M, SADEGHILARIDJANI M, SHITTU J, et al. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette[J]. Journal of Alloys and Compounds2020843: 156004.
24 LV S S, ZU Y F, CHEN G Q, et al. A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness[J]. Materials Science and Engineering: A2020795: 140035.
25 GORR B, MUELLER F, CHRIST H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition[J]. Journal of Alloys and Compounds2016688: 468-477.
26 SONAR T, IVANOV M, TROFIMOV E, et al. An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications[J]. Materials Science for Energy Technologies20247: 35-60.
27 DEWANGAN S K, MANGISH A, KUMAR S, et al. A review on high-temperature applicability: A milestone for high entropy alloys[J]. Engineering Science and Technology, an International Journal, 202235: 101211.
28 OSMAN H, LIU L. Additive manufacturing of high-entropy alloy composites: A review[J]. Transactions of Nonferrous Metals Society of China202333(1): 1-24.
29 FERREIRóS P A, VON TIEDEMANN S O, PARKES N, et al. VNbCrMo refractory high-entropy alloy for nuclear applications[J]. International Journal of Refractory Metals and Hard Materials2023113: 106200.
30 GE S F, FU H M, ZHANG L, et al. Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy[J]. Materials Science and Engineering: A2020784: 139275.
31 MOTALLEBZADEH A, PEIGHAMBARDOUST N S, SHEIKH S, et al. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications[J]. Intermetallics2019113: 106572.
32 WU S Y, QIAO D X, ZHANG H T, et al. Microstructure and mechanical properties of C x Hf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures[J]. Journal of Materials Science & Technology202297: 229-238.
33 彭立明, 邓庆琛, 吴玉娟, 等. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报202359(1): 31-54.
  PENG L M, DENG Q C, WU Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review[J]. Acta Metallurgica Sinica202359(1): 31-54 (in Chinese).
34 MA X B, XIN D Q, YE J J, et al. Comparative study of the microstructure evolution of dual-phase Al-Co-Cr-Fe-Ni high-entropy alloy prepared by direct laser deposition and vacuum arc melting[J]. Materials Letters2022326: 132951.
35 WANG M, MA Z L, XU Z Q, et al. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys[J]. Journal of Alloys and Compounds2019803: 778-785.
36 ZHANG P, LI Y T, CHEN Z, et al. Oxidation response of a vacuum arc melted NbZrTiCrAl refractory high entropy alloy at 800-1 200 ℃[J]. Vacuum2019162: 20-27.
37 MEINERS W, WISSENBACH K, GASSER A. Shaped body especially prototype or replacement part production: DE19649849C1[P]. 1998-02-12.
38 GUO N N, LEU M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering20138(3): 215-243.
39 GIBSON I, ROSEN D, STUCKER B, et al. Development of additive manufacturing technology[M]∥Additive Manufacturing Technologies. Cham: Springer, 2021: 23-51.
40 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报202359(2): 205-225.
  TANG W N, MO N, HOU J. Research progress of additively manufactured magnesium alloys: A review[J]. Acta Metallurgica Sinica202359(2): 205-225 (in Chinese).
41 苏悦. 激光选区熔化成形Al x CrCuFeNi2高熵合金的组织与性能研究[D]. 武汉: 华中科技大学, 2021.
  SU Y. Research on microstructure and properties of Al x CrCuFeNi2 high entropy alloys fabricated via selective laser melting[D].Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese).
42 王福超. 激光选区熔化CoCrFeNiMn高熵合金成形工艺优化及性能表征[D]. 武汉: 华中科技大学, 2019.
  WANG F C. Optimization of forming process and characterization of CoCrFeNiMn high entropy alloy fabricated by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
43 李涤尘, 鲁中良, 田小永, 等. 增材制造: 面向航空航天制造的变革性技术[J]. 航空学报202243(4): 525387.
  LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525387 (in Chinese).
44 谭永华, 赵剑, 张武昆, 等. 融合增材制造的液体火箭发动机创新设计方法与应用[J]. 火箭推进202349(4): 1-16, 123.
  TAN Y H, ZHAO J, ZHANG W K, et al. Innovative design method and application of liquid rocket engine integrated additive manufacturing[J]. Journal of Rocket Propulsion202349(4): 1-16, 123 (in Chinese).
45 张武昆, 谭永华, 高玉闪, 等. 液体火箭发动机增材制造技术研究进展[J]. 推进技术202243(5): 29-44.
  ZHANG W K, TAN Y H, GAO Y S, et al. Research progress of additive manufacturing technology in liquid rocket engine[J]. Journal of Propulsion Technology202243(5): 29-44 (in Chinese).
46 GU D D, SHI Q M, LIN K J, et al. Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting[J]. Additive Manufacturing201822: 265-278.
47 JIA Q B, ROMETSCH P, KüRNSTEINER P, et al. Selective laser melting of a high strength Al Mn Sc alloy: Alloy design and strengthening mechanisms[J]. Acta Materialia2019171: 108-118.
48 JOSEPH J, HAGHDADI N, SHAMLAYE K, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures[J]. Wear2019428-429: 32-44.
49 JIA Q B, ZHANG F, ROMETSCH P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting[J]. Acta Materialia2020193: 239-251.
50 YURCHENKO N, PANINA E, ZHEREBTSOV S, et al. Design and characterization of eutectic refractory high entropy alloys[J]. Materialia202116: 101057.
51 TUNES M A, VISHNYAKOV V M. Microstructural origins of the high mechanical damage tolerance of NbTaMoW refractory high-entropy alloy thin films[J]. Materials & Design2019170: 107692.
52 MONTERO J, EK G, SAHLBERG M, et al. Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy[J]. Scripta Materialia2021194: 113699.
53 WANG T T, JIANG W T, WANG X H, et al. Microstructure and properties of Al0.5NbTi3V x Zr2 refractory high entropy alloys combined with high strength and ductility[J]. Journal of Materials Research and Technology202324: 1733-1743.
54 XIAO B, JIA W P, WANG J, et al. Selective electron beam melting of WMoTaNbVFeCoCrNi refractory high-entropy alloy[J]. Materials Characterization2022193: 112278.
55 GU P F, QI T B, CHEN L, et al. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials2022105: 105834.
56 ZHANG H, ZHAO Y Z, HUANG S, et al. Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM)[J]. Materials201912(5): 720.
57 LIU C, ZHU K Y, DING W W, et al. Additive manufacturing of WMoTaTi refractory high-entropy alloy by employing fluidised powders[J]. Powder Metallurgy202265(5): 413-425.
58 CHEN L, YANG Z W, LU L K, et al. Effect of TiC on the high-temperature oxidation behavior of WMoTaNbV refractory high entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials2023110: 106027.
59 HUBER F, BARTELS D, SCHMIDT M. In-situ alloy formation of a WMoTaNbV refractory metal high entropy alloy by laser powder bed fusion (PBF-LB/M)[J]. Materials202114(11): 3095.
60 ZHU P, YU Y, ZHANG C, et al. V0.5Nb0.5ZrTi refractory high-entropy alloy fabricated by laser addictive manufacturing using elemental powders[J]. International Journal of Refractory Metals and Hard Materials2023113: 106220.
61 ZHANG H, ZHAO Y Z, CAI J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing[J]. Materials & Design2021201: 109462.
62 WANG F, YUAN T C, LI R D, et al. Effect of Mo on the morphology, microstructure and mechanical properties of NbTa0.5TiMo x refractory high entropy alloy fabricated by laser powder bed fusion using elemental mixed powders[J]. International Journal of Refractory Metals and Hard Materials2023111: 106107.
63 ISHIMOTO T, OZASA R, NAKANO K, et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility[J]. Scripta Materialia2021194: 113658.
64 SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics201119(5): 698-706.
65 GHASHGHAY B R, ABEDI H R, SHABESTARI S G. On the capability of grain refinement during selective laser melting of AlSi10Mg alloy[J]. Journal of Materials Research and Technology202324: 9722-9730.
66 CHANG K, TAN Y, MA L, et al. A nickel-base superalloy with refined microstructures and excellent mechanical properties prepared by selective laser melting[J]. Materials Letters2022324: 132700.
67 YUAN B L, LI C Q, DONG Y, et al. Selective laser melting of the Al0.3CoCrFeNiCu high-entropy alloy: Processing parameters, microstructure and mechanical properties[J]. Materials & Design2022220: 110847.
68 WANG D, SONG C H, YANG Y Q, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials & Design2016100: 291-299.
69 LI C Q, DENG Y S, CHEN M C, et al. Excellent corrosion resistance of Al0.3CoCrFeNiCu high-entropy alloy fabricated by selective laser melting and annealing treatment[J]. Materials Letters2023348: 134711.
70 DU Y H, GUO C H, JIANG F C, et al. Effect of heat treatment on microstructure and properties of Al0.5CoCrFeNi high entropy alloy fabricated by selective laser melting[J]. Materials Science and Engineering: A2023882: 145466.
71 ZHANG H, CAI J L, GENG J L, et al. Study on annealing treatment of NbMoTaTiNi high-entropy alloy with ultra-high strength disordered-ordered transition structure for additive manufacturing[J]. Journal of Alloys and Compounds2023941: 168810.
72 KHODASHENAS H, MIRZADEH H. Post-processing of additively manufactured high-entropy alloys—A review[J]. Journal of Materials Research and Technology202221: 3795-3814.
73 CHENG W, JI L F, ZHANG L T, et al. Refractory high-entropy alloys fabricated using laser technologies: A concrete review[J]. Journal of Materials Research and Technology202324: 7497-7524.
74 ONODERA R, ASAKAWA S, SEGAWA R, et al. Zinc ions have a potential to attenuate both Ni ion uptake and Ni ion-induced inflammation[J]. Scientific Reports20188(1): 2911.
75 AU A, HA J, HERNANDEZ M, et al. Nickel and vanadium metal ions induce apoptosis of T-lymphocyte Jurkat cells[J]. Journal of Biomedical Materials Research Part A200679(3): 512-521.
76 NAGASE T, TODAI M, HORI T, et al. Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials[J]. Journal of Alloys and Compounds2018753: 412-421.
77 KUMAR P, PATEL M, JAIN N K, et al. Bio-tribological characteristics of 3D-printed Ti-Ta-Nb-Mo-Zr high entropy alloy in human body emulating biofluids for implant applications[J]. Journal of Bio-and Tribo-Corrosion20229(1): 21.
78 GOKCEKAYA O, ISHIMOTO T, NISHIKAWA Y, et al. Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion[J]. Materials Research Letters202311(4): 274-280.
79 HORI T, NAGASE T, TODAI M, et al. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials[J]. Scripta Materialia2019172: 83-87.
80 FENG J Y, WEI D X, ZHANG P L, et al. Preparation of TiNbTaZrMo high-entropy alloy with tunable Young’s modulus by selective laser melting[J]. Journal of Manufacturing Processes202385: 160-165.
81 KORKMAZ M E, GUPTA M K, ROBAK G, et al. Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges[J]. Journal of Manufacturing Processes202281: 1040-1063.
82 郑玉峰, 夏丹丹, 谌雨农, 等. 增材制造可降解金属医用植入物[J]. 金属学报202157(11): 1499-1520.
  ZHENG Y F, XIA D D, SHEN Y N, et al. Additively manufactured biodegrabable metal implants[J]. Acta Metallurgica Sinica202157(11): 1499-1520 (in Chinese).
83 孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报202243(6): 527590.
  SUN C. Development status, challenges and trends of strength technology for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica202243(6): 527590 (in Chinese).
84 瞿绍奇, 孙英超, 邬亨贵, 等. 飞行器径向连接螺栓振动断裂分析[J]. 航空学报202142(5): 524431.
  QU S Q, SUN Y C, WU H G, et al. Analysis of vibration fracture of radial connection bolt of aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524431 (in Chinese).
85 曹奇凯, 王鄢, 姚念奎, 等. 先进舰载战斗机强度设计技术发展与实践[J]. 航空学报202142(8): 525793.
  CAO Q K, WANG Y, YAO N K, et al. Development and application of strength design technology of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525793 (in Chinese).
86 SHU T, HU N, LIU F, et al. Nanoparticles induced intragranular and dislocation substructures in powder bed fusion for strengthening of high-entropy-alloy[J]. Materials Science and Engineering: A2023878: 145110.
87 YU T, ZHOU G M, CHENG Y G, et al. Microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy manufactured by selective laser melting[J]. Optics & Laser Technology2023163: 109396.
88 ZHANG Z B, WAN Y X, SUN B, et al. Effect of Y0.5Gd0.5TaO4 additions on the microstructures, mechanical properties and thermophysical properties of NbMoTaW refractory high-entropy alloy[J]. International Journal of Refractory Metals and Hard Materials2023111: 106111.
89 JI W M, WU M S. Retainable short-range order effects on the strength and toughness of NbMoTaW refractory high-entropy alloys[J]. Intermetallics2022150: 107707.
90 BI L X, LI X N, HU Y L, et al. Weak enthalpy-interaction-element-modulated NbMoTaW high-entropy alloy thin films[J]. Applied Surface Science2021565: 150462.
91 XU J T, DUAN R, FENG K, et al. Enhanced strength and ductility of laser powder bed fused NbMoTaW refractory high-entropy alloy via carbon microalloying[J]. Additive Manufacturing Letters20223: 100079.
92 YANG X G, ZHOU Y, YANG Z, et al. Achieving high strength and ductility in Ni10Cr6WFe9Ti high entropy alloy by regulating lattice distortion[J]. Materials Letters2023330: 133394.
93 葛绍璠. Mo-Nb-Ta-Ti-V系难熔高熵合金的合成及性能研究[D]. 合肥: 中国科学技术大学, 2022.
  GE S F. Synthesis and properties of Mo-Nb-Ta-Ti-V refractory high-entropy alloy[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese).
94 宋波, 张金良, 章媛洁, 等. 金属激光增材制造材料设计研究进展[J]. 金属学报202359(1): 1-15.
  SONG B, ZHANG J L, ZHANG Y J, et al. Research progress of materials design for metal laser additive manufacturing[J]. Acta Metallurgica Sinica202359(1): 1-15 (in Chinese).
95 MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal200612(5): 254-265.
96 张兴寿, 王勤英, 郑淮北, 等. 激光增材制造合金材料残余应力及应力腐蚀研究现状[J]. 激光与光电子学进展202259(13): 1300002.
  ZHANG X S, WANG Q Y, ZHENG H B, et al. Residual stress and stress corrosion of alloy materials in laser additive manufacturing[J]. Laser & Optoelectronics Progress202259(13): 1300002 (in Chinese).
97 LIU F C, LIN X, YANG G L, et al. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy[J]. Optics & Laser Technology201143(1): 208-213.
98 谷朋飞. 选区激光熔化成形VNbMoTaW难熔高熵合金组织及性能研究[D]. 镇江: 江苏大学, 2022.
  GU P F. Microstructure and properties of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[D].Zhenjiang: Jiangsu University, 2022 (in Chinese).
99 ZOU X, CHANG T F, YAN Z, et al. Control of thermal strain and residual stress in pulsed-wave direct laser deposition[J]. Optics & Laser Technology2023163: 109386.
100 VYATSKIKH A L, WANG X, HALEY J, et al. Residual stress mitigation in directed energy deposition[J]. Materials Science and Engineering: A2023871: 144845.
101 ZHANG H, XU W, XU Y J, et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): Experiment and simulation[J]. The International Journal of Advanced Manufacturing Technology201896(1-4): 461-474.
102 KRUTH J P, DECKERS J, YASA E, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012226(6): 980-991.
103 ZHOU L B, SUN J S, CHEN J, et al. Study of substrate preheating on the microstructure and mechanical performance of Ti-15Mo alloy processed by selective laser melting[J]. Journal of Alloys and Compounds2022928: 167130.
104 CHEN L, GU P F, GE T, et al. Effect of laser shock peening on microstructure and mechanical properties of TiC strengthened inconel 625 alloy processed by selective laser melting[J]. Materials Science and Engineering: A2022835: 142610.
105 ZHAI W G, ZHOU W, NAI S M L. Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting[J]. Materials Science and Engineering: A2022832: 142460.
106 谭晓明, 张丹峰, 战贵盼, 等. 海洋环境与疲劳载荷联合作用下喷丸超高强度钢损伤机制[J]. 航空学报202041(8): 223631.
  TAN X M, ZHANG D F, ZHAN G P, et al. Damage mechanism of shot peened ultra-high strength steel under combined action of marine environment and fatigue load[J]. Acta Aeronautica et Astronautica Sinica202041(8): 223631 (in Chinese).
107 陈跃良, 陈亮, 卞贵学, 等. 先进舰载战斗机腐蚀防护控制与日历寿命设计[J]. 航空学报202142(8): 525786.
  CHEN Y L, CHEN L, BIAN G X, et al. Corrosion protection control and calendar life design of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525786 (in Chinese).
108 GAO Y, CHONG K, QIAO L J, et al. Synthesis and corrosion behavior of Mo15Nb20Ta10Ti35V20 refractory high entropy alloy[J]. Materials & Design2023228: 111820.
109 PEIGHAMBARDOUST N S, ALAMDARI A A, UNAL U, et al. In vitro biocompatibility evaluation of Ti1.5ZrTa0.5Nb0.5Hf0.5 refractory high-entropy alloy film for orthopedic implants: Microstructural, mechanical properties and corrosion behavior[J]. Journal of Alloys and Compounds2021883: 160786.
110 WANG G Y, XU J, CHEN Y H, et al. Assessment of the tribocorrosion performance of a (TiZrNbTaMo)C refractory high entropy alloy carbide coating in a marine environment[J]. Journal of Alloys and Compounds2023965: 171342.
111 RON T, LEON A, POPOV V, et al. Synthesis of refractory high-entropy alloy WTaMoNbV by powder bed fusion process using mixed elemental alloying powder[J]. Materials202215(12): 4043.
文章导航

/