选区激光熔化制备难熔高熵合金研究现状与展望
收稿日期: 2023-09-04
修回日期: 2023-10-08
录用日期: 2023-11-21
网络出版日期: 2023-12-07
基金资助
国家自然科学基金(52105451);江西省杰出青年基金(20232ACB214013);江西省重大科技研发专项(20194ABC28001);江西省重点研发计划(20212BBE51007)
Research status and prospects of refractory high-entropy alloys prepared by selective laser melting
Received date: 2023-09-04
Revised date: 2023-10-08
Accepted date: 2023-11-21
Online published: 2023-12-07
Supported by
National Natural Science Foundation of China(52105451);Jiangxi Provincial Science Fund for Distinguished Young Scholars(20232ACB214013);Science and Technology Major Project of Jiangxi Province(20194ABC28001);Key Research and Development Program of Jiangxi Province(20212BBE51007)
难熔高熵合金(RHEAs)因具备高熔点、高硬度和高温相结构稳定性成为航空航天、海洋船舶和核能工业等领域的重要材料。本文对选区激光熔化(SLM)技术制备的不同体系RHEAs进行梳理,并对其微观组织、力学性能、残余应力和耐腐蚀性能进行分析。结果表明,SLM制备的RHEAs未改变其固有相(BCC相),且枝晶形貌为树枝晶、等轴晶、胞状晶等,晶粒尺寸较电弧熔炼平均减少80%~90%;细晶强化、固溶强化等强化机制有效提升了材料的力学性能;SLM技术在制备RHEAs时,热源的局部加热和冷却会造成残余应力积累,可通过工艺参数优化、母材预热等方法降低热应力;SLM可实现难熔元素均匀分布,减缓腐蚀介质侵蚀合金表面的速率,从而增强合金的耐蚀性能。
郭正华 , 陈正 , 曾一达 , 郭义乾 , 牛振华 , 杨子睿 , 李智勇 , 万骏武 . 选区激光熔化制备难熔高熵合金研究现状与展望[J]. 航空学报, 2024 , 45(14) : 29518 -029518 . DOI: 10.7527/S1000-6893.2023.29518
With advantages of high melting point, high hardness and high-temperature phase structure stability, Refractory High-Entropy Alloys (RHEAs) have become important materials in the fields of aerospace, marine and nuclear energy industries. This paper presents a systematic review of different systems of RHEAs prepared by Selective Laser Melting (SLM) technology, and analyses the microstructure, mechanical properties, residual stress and corrosion resistance of SLM. The results show that the RHEAs prepared by SLM have not changed the intrinsic phase (BCC phase), the dendritic crystal morphology is dendritic, equiaxed, and cytosolic, and the grain size has been reduced by an average of 80%–90% compared with that of conventional arc melting. The results also show strengthening mechanisms such as fine grain strengthening and solid solution strengthening caused by grain refinement effectively enhance the mechanical properties of the materials. In the preparation of RHEAs by SLM technology, the residual stress accumulation caused by local heating and cooling of the heat source can be reduced by optimizing the process parameters and preheating the base metal; SLM can achieve uniform distribution of refractory elements, and the refined grains can increase the grain boundary density, reduce intergranular corrosion, and enhance the corrosion resistance of the alloy.
1 | 鲁一荻, 张骁勇, 侯硕, 等. 高熵合金的发展及工业应用展望[J]. 稀有金属材料与工程, 2021, 50(1): 333-341. |
LU Y D, ZHANG X Y, HOU S, et al. Perspective on industrial applications and research progress of high-entropy alloys[J]. Rare Metal Materials and Engineering, 2021, 50(1): 333-341 (in Chinese). | |
2 | ZHEN Y Q, WANG K, XU G P, et al. Effect of in-situ nanoparticles induced by Ti addition on the microstructure and tribological properties of FeCrB alloys[J]. Journal of Materials Research and Technology, 2024, 29: 5354-5368. |
3 | TRINK B, WEI?ENSTEINER I, UGGOWITZER P J, et al. Processing and microstructure-property relations of Al-Mg-Si-Fe crossover alloys[J]. Acta Materialia, 2023, 257: 119160. |
4 | WU D, HAO M Y, ZHANG T L, et al. Heterostructures enhance simultaneously strength and ductility of a commercial titanium alloy[J]. Acta Materialia, 2023, 257: 119182. |
5 | HE J Y, LIU W H, WANG H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia, 2014, 62: 105-113. |
6 | YEH J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759-1771. |
7 | CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218. |
8 | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. |
9 | 庞景宇. 难熔中高熵合金微观结构、力学性能及变形机制研究[D]. 合肥: 中国科学技术大学, 2022. |
PANG J Y. Investigation on the microstructure, mechanical properties and deformation mechanisms of refractory medium/high entropy alloys[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese). | |
10 | BOLTZMANN L. The second law of thermodynamics[M]∥MCGUINNESS B, ed. Theoretical Physics and Philosophical Problems. Dordrecht: Springer Netherlands, 1974: 13-32. |
11 | ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. |
12 | YEH J W, CHEN Y L, LIN S J, et al. High-entropy alloys—A new era of exploitation[J]. Materials Science Forum, 2007, 560: 1-9. |
13 | TUNG C C, YEH J W, SHUN T T, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J]. Materials Letters, 2007, 61(1): 1-5. |
14 | LIU Y, LIU W, ZHOU Q Y, et al. An initio study of thermodynamic and fracture properties of CrFeCoNiMn x (0≤x≤3) high-entropy alloys[J]. Journal of Materials Research and Technology, 2022, 17: 498-506. |
15 | LIN D Y, XU L Y, JING H Y, et al. A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle[J]. Additive Manufacturing, 2020, 36: 101591. |
16 | DENG N, WANG J, WANG J X, et al. Effect of high magnetic field assisted heat treatment on microstructure and properties of AlCoCrCuFeNi high-entropy alloy[J]. Materials Letters, 2021, 303: 130540. |
17 | LIANG A Y, GOODELMAN D C, HODGE A M, et al. CoFeNiTi x and CrFeNiTi x high entropy alloy thin films microstructure formation[J]. Acta Materialia, 2023, 257: 119163. |
18 | GHOLIZADEH R, YOSHIDA S, BAI Y, et al. Global understanding of deformation behavior in CoCrFeMnNi high entropy alloy under high-strain torsion deformation at a wide range of elevated temperatures[J]. Acta Materialia, 2023, 243: 118514. |
19 | SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765. |
20 | REN X Q, LI Y G, QI Y F, et al. Review on preparation technology and properties of refractory high entropy alloys[J]. Materials, 2022, 15(8): 2931. |
21 | SRIKANTH M, ANNAMALAI A R, MUTHUCHAMY A, et al. A review of the latest developments in the field of refractory high-entropy alloys[J]. Crystals, 2021, 11(6): 612. |
22 | ZHENG W J, Lü S L, WU S S, et al. Development of MoNbVTa x refractory high entropy alloy with high strength at elevated temperature[J]. Materials Science and Engineering: A, 2022, 850: 143554. |
23 | POLE M, SADEGHILARIDJANI M, SHITTU J, et al. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette[J]. Journal of Alloys and Compounds, 2020, 843: 156004. |
24 | LV S S, ZU Y F, CHEN G Q, et al. A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness[J]. Materials Science and Engineering: A, 2020, 795: 140035. |
25 | GORR B, MUELLER F, CHRIST H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition[J]. Journal of Alloys and Compounds, 2016, 688: 468-477. |
26 | SONAR T, IVANOV M, TROFIMOV E, et al. An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications[J]. Materials Science for Energy Technologies, 2024, 7: 35-60. |
27 | DEWANGAN S K, MANGISH A, KUMAR S, et al. A review on high-temperature applicability: A milestone for high entropy alloys[J]. Engineering Science and Technology, an International Journal, 2022, 35: 101211. |
28 | OSMAN H, LIU L. Additive manufacturing of high-entropy alloy composites: A review[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(1): 1-24. |
29 | FERREIRóS P A, VON TIEDEMANN S O, PARKES N, et al. VNbCrMo refractory high-entropy alloy for nuclear applications[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113: 106200. |
30 | GE S F, FU H M, ZHANG L, et al. Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy[J]. Materials Science and Engineering: A, 2020, 784: 139275. |
31 | MOTALLEBZADEH A, PEIGHAMBARDOUST N S, SHEIKH S, et al. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications[J]. Intermetallics, 2019, 113: 106572. |
32 | WU S Y, QIAO D X, ZHANG H T, et al. Microstructure and mechanical properties of C x Hf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures[J]. Journal of Materials Science & Technology, 2022, 97: 229-238. |
33 | 彭立明, 邓庆琛, 吴玉娟, 等. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54. |
PENG L M, DENG Q C, WU Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review[J]. Acta Metallurgica Sinica, 2023, 59(1): 31-54 (in Chinese). | |
34 | MA X B, XIN D Q, YE J J, et al. Comparative study of the microstructure evolution of dual-phase Al-Co-Cr-Fe-Ni high-entropy alloy prepared by direct laser deposition and vacuum arc melting[J]. Materials Letters, 2022, 326: 132951. |
35 | WANG M, MA Z L, XU Z Q, et al. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys[J]. Journal of Alloys and Compounds, 2019, 803: 778-785. |
36 | ZHANG P, LI Y T, CHEN Z, et al. Oxidation response of a vacuum arc melted NbZrTiCrAl refractory high entropy alloy at 800-1 200 ℃[J]. Vacuum, 2019, 162: 20-27. |
37 | MEINERS W, WISSENBACH K, GASSER A. Shaped body especially prototype or replacement part production: DE19649849C1[P]. 1998-02-12. |
38 | GUO N N, LEU M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215-243. |
39 | GIBSON I, ROSEN D, STUCKER B, et al. Development of additive manufacturing technology[M]∥Additive Manufacturing Technologies. Cham: Springer, 2021: 23-51. |
40 | 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225. |
TANG W N, MO N, HOU J. Research progress of additively manufactured magnesium alloys: A review[J]. Acta Metallurgica Sinica, 2023, 59(2): 205-225 (in Chinese). | |
41 | 苏悦. 激光选区熔化成形Al x CrCuFeNi2高熵合金的组织与性能研究[D]. 武汉: 华中科技大学, 2021. |
SU Y. Research on microstructure and properties of Al x CrCuFeNi2 high entropy alloys fabricated via selective laser melting[D].Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese). | |
42 | 王福超. 激光选区熔化CoCrFeNiMn高熵合金成形工艺优化及性能表征[D]. 武汉: 华中科技大学, 2019. |
WANG F C. Optimization of forming process and characterization of CoCrFeNiMn high entropy alloy fabricated by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese). | |
43 | 李涤尘, 鲁中良, 田小永, 等. 增材制造: 面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387. |
LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525387 (in Chinese). | |
44 | 谭永华, 赵剑, 张武昆, 等. 融合增材制造的液体火箭发动机创新设计方法与应用[J]. 火箭推进, 2023, 49(4): 1-16, 123. |
TAN Y H, ZHAO J, ZHANG W K, et al. Innovative design method and application of liquid rocket engine integrated additive manufacturing[J]. Journal of Rocket Propulsion, 2023, 49(4): 1-16, 123 (in Chinese). | |
45 | 张武昆, 谭永华, 高玉闪, 等. 液体火箭发动机增材制造技术研究进展[J]. 推进技术, 2022, 43(5): 29-44. |
ZHANG W K, TAN Y H, GAO Y S, et al. Research progress of additive manufacturing technology in liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(5): 29-44 (in Chinese). | |
46 | GU D D, SHI Q M, LIN K J, et al. Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting[J]. Additive Manufacturing, 2018, 22: 265-278. |
47 | JIA Q B, ROMETSCH P, KüRNSTEINER P, et al. Selective laser melting of a high strength Al Mn Sc alloy: Alloy design and strengthening mechanisms[J]. Acta Materialia, 2019, 171: 108-118. |
48 | JOSEPH J, HAGHDADI N, SHAMLAYE K, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures[J]. Wear, 2019, 428-429: 32-44. |
49 | JIA Q B, ZHANG F, ROMETSCH P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting[J]. Acta Materialia, 2020, 193: 239-251. |
50 | YURCHENKO N, PANINA E, ZHEREBTSOV S, et al. Design and characterization of eutectic refractory high entropy alloys[J]. Materialia, 2021, 16: 101057. |
51 | TUNES M A, VISHNYAKOV V M. Microstructural origins of the high mechanical damage tolerance of NbTaMoW refractory high-entropy alloy thin films[J]. Materials & Design, 2019, 170: 107692. |
52 | MONTERO J, EK G, SAHLBERG M, et al. Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy[J]. Scripta Materialia, 2021, 194: 113699. |
53 | WANG T T, JIANG W T, WANG X H, et al. Microstructure and properties of Al0.5NbTi3V x Zr2 refractory high entropy alloys combined with high strength and ductility[J]. Journal of Materials Research and Technology, 2023, 24: 1733-1743. |
54 | XIAO B, JIA W P, WANG J, et al. Selective electron beam melting of WMoTaNbVFeCoCrNi refractory high-entropy alloy[J]. Materials Characterization, 2022, 193: 112278. |
55 | GU P F, QI T B, CHEN L, et al. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2022, 105: 105834. |
56 | ZHANG H, ZHAO Y Z, HUANG S, et al. Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM)[J]. Materials, 2019, 12(5): 720. |
57 | LIU C, ZHU K Y, DING W W, et al. Additive manufacturing of WMoTaTi refractory high-entropy alloy by employing fluidised powders[J]. Powder Metallurgy, 2022, 65(5): 413-425. |
58 | CHEN L, YANG Z W, LU L K, et al. Effect of TiC on the high-temperature oxidation behavior of WMoTaNbV refractory high entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2023, 110: 106027. |
59 | HUBER F, BARTELS D, SCHMIDT M. In-situ alloy formation of a WMoTaNbV refractory metal high entropy alloy by laser powder bed fusion (PBF-LB/M)[J]. Materials, 2021, 14(11): 3095. |
60 | ZHU P, YU Y, ZHANG C, et al. V0.5Nb0.5ZrTi refractory high-entropy alloy fabricated by laser addictive manufacturing using elemental powders[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113: 106220. |
61 | ZHANG H, ZHAO Y Z, CAI J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing[J]. Materials & Design, 2021, 201: 109462. |
62 | WANG F, YUAN T C, LI R D, et al. Effect of Mo on the morphology, microstructure and mechanical properties of NbTa0.5TiMo x refractory high entropy alloy fabricated by laser powder bed fusion using elemental mixed powders[J]. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106107. |
63 | ISHIMOTO T, OZASA R, NAKANO K, et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility[J]. Scripta Materialia, 2021, 194: 113658. |
64 | SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706. |
65 | GHASHGHAY B R, ABEDI H R, SHABESTARI S G. On the capability of grain refinement during selective laser melting of AlSi10Mg alloy[J]. Journal of Materials Research and Technology, 2023, 24: 9722-9730. |
66 | CHANG K, TAN Y, MA L, et al. A nickel-base superalloy with refined microstructures and excellent mechanical properties prepared by selective laser melting[J]. Materials Letters, 2022, 324: 132700. |
67 | YUAN B L, LI C Q, DONG Y, et al. Selective laser melting of the Al0.3CoCrFeNiCu high-entropy alloy: Processing parameters, microstructure and mechanical properties[J]. Materials & Design, 2022, 220: 110847. |
68 | WANG D, SONG C H, YANG Y Q, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials & Design, 2016, 100: 291-299. |
69 | LI C Q, DENG Y S, CHEN M C, et al. Excellent corrosion resistance of Al0.3CoCrFeNiCu high-entropy alloy fabricated by selective laser melting and annealing treatment[J]. Materials Letters, 2023, 348: 134711. |
70 | DU Y H, GUO C H, JIANG F C, et al. Effect of heat treatment on microstructure and properties of Al0.5CoCrFeNi high entropy alloy fabricated by selective laser melting[J]. Materials Science and Engineering: A, 2023, 882: 145466. |
71 | ZHANG H, CAI J L, GENG J L, et al. Study on annealing treatment of NbMoTaTiNi high-entropy alloy with ultra-high strength disordered-ordered transition structure for additive manufacturing[J]. Journal of Alloys and Compounds, 2023, 941: 168810. |
72 | KHODASHENAS H, MIRZADEH H. Post-processing of additively manufactured high-entropy alloys—A review[J]. Journal of Materials Research and Technology, 2022, 21: 3795-3814. |
73 | CHENG W, JI L F, ZHANG L T, et al. Refractory high-entropy alloys fabricated using laser technologies: A concrete review[J]. Journal of Materials Research and Technology, 2023, 24: 7497-7524. |
74 | ONODERA R, ASAKAWA S, SEGAWA R, et al. Zinc ions have a potential to attenuate both Ni ion uptake and Ni ion-induced inflammation[J]. Scientific Reports, 2018, 8(1): 2911. |
75 | AU A, HA J, HERNANDEZ M, et al. Nickel and vanadium metal ions induce apoptosis of T-lymphocyte Jurkat cells[J]. Journal of Biomedical Materials Research Part A, 2006, 79(3): 512-521. |
76 | NAGASE T, TODAI M, HORI T, et al. Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials[J]. Journal of Alloys and Compounds, 2018, 753: 412-421. |
77 | KUMAR P, PATEL M, JAIN N K, et al. Bio-tribological characteristics of 3D-printed Ti-Ta-Nb-Mo-Zr high entropy alloy in human body emulating biofluids for implant applications[J]. Journal of Bio-and Tribo-Corrosion, 2022, 9(1): 21. |
78 | GOKCEKAYA O, ISHIMOTO T, NISHIKAWA Y, et al. Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion[J]. Materials Research Letters, 2023, 11(4): 274-280. |
79 | HORI T, NAGASE T, TODAI M, et al. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials[J]. Scripta Materialia, 2019, 172: 83-87. |
80 | FENG J Y, WEI D X, ZHANG P L, et al. Preparation of TiNbTaZrMo high-entropy alloy with tunable Young’s modulus by selective laser melting[J]. Journal of Manufacturing Processes, 2023, 85: 160-165. |
81 | KORKMAZ M E, GUPTA M K, ROBAK G, et al. Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges[J]. Journal of Manufacturing Processes, 2022, 81: 1040-1063. |
82 | 郑玉峰, 夏丹丹, 谌雨农, 等. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520. |
ZHENG Y F, XIA D D, SHEN Y N, et al. Additively manufactured biodegrabable metal implants[J]. Acta Metallurgica Sinica, 2021, 57(11): 1499-1520 (in Chinese). | |
83 | 孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报, 2022, 43(6): 527590. |
SUN C. Development status, challenges and trends of strength technology for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 527590 (in Chinese). | |
84 | 瞿绍奇, 孙英超, 邬亨贵, 等. 飞行器径向连接螺栓振动断裂分析[J]. 航空学报, 2021, 42(5): 524431. |
QU S Q, SUN Y C, WU H G, et al. Analysis of vibration fracture of radial connection bolt of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524431 (in Chinese). | |
85 | 曹奇凯, 王鄢, 姚念奎, 等. 先进舰载战斗机强度设计技术发展与实践[J]. 航空学报, 2021, 42(8): 525793. |
CAO Q K, WANG Y, YAO N K, et al. Development and application of strength design technology of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525793 (in Chinese). | |
86 | SHU T, HU N, LIU F, et al. Nanoparticles induced intragranular and dislocation substructures in powder bed fusion for strengthening of high-entropy-alloy[J]. Materials Science and Engineering: A, 2023, 878: 145110. |
87 | YU T, ZHOU G M, CHENG Y G, et al. Microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy manufactured by selective laser melting[J]. Optics & Laser Technology, 2023, 163: 109396. |
88 | ZHANG Z B, WAN Y X, SUN B, et al. Effect of Y0.5Gd0.5TaO4 additions on the microstructures, mechanical properties and thermophysical properties of NbMoTaW refractory high-entropy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106111. |
89 | JI W M, WU M S. Retainable short-range order effects on the strength and toughness of NbMoTaW refractory high-entropy alloys[J]. Intermetallics, 2022, 150: 107707. |
90 | BI L X, LI X N, HU Y L, et al. Weak enthalpy-interaction-element-modulated NbMoTaW high-entropy alloy thin films[J]. Applied Surface Science, 2021, 565: 150462. |
91 | XU J T, DUAN R, FENG K, et al. Enhanced strength and ductility of laser powder bed fused NbMoTaW refractory high-entropy alloy via carbon microalloying[J]. Additive Manufacturing Letters, 2022, 3: 100079. |
92 | YANG X G, ZHOU Y, YANG Z, et al. Achieving high strength and ductility in Ni10Cr6WFe9Ti high entropy alloy by regulating lattice distortion[J]. Materials Letters, 2023, 330: 133394. |
93 | 葛绍璠. Mo-Nb-Ta-Ti-V系难熔高熵合金的合成及性能研究[D]. 合肥: 中国科学技术大学, 2022. |
GE S F. Synthesis and properties of Mo-Nb-Ta-Ti-V refractory high-entropy alloy[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese). | |
94 | 宋波, 张金良, 章媛洁, 等. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15. |
SONG B, ZHANG J L, ZHANG Y J, et al. Research progress of materials design for metal laser additive manufacturing[J]. Acta Metallurgica Sinica, 2023, 59(1): 1-15 (in Chinese). | |
95 | MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5): 254-265. |
96 | 张兴寿, 王勤英, 郑淮北, 等. 激光增材制造合金材料残余应力及应力腐蚀研究现状[J]. 激光与光电子学进展, 2022, 59(13): 1300002. |
ZHANG X S, WANG Q Y, ZHENG H B, et al. Residual stress and stress corrosion of alloy materials in laser additive manufacturing[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1300002 (in Chinese). | |
97 | LIU F C, LIN X, YANG G L, et al. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy[J]. Optics & Laser Technology, 2011, 43(1): 208-213. |
98 | 谷朋飞. 选区激光熔化成形VNbMoTaW难熔高熵合金组织及性能研究[D]. 镇江: 江苏大学, 2022. |
GU P F. Microstructure and properties of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[D].Zhenjiang: Jiangsu University, 2022 (in Chinese). | |
99 | ZOU X, CHANG T F, YAN Z, et al. Control of thermal strain and residual stress in pulsed-wave direct laser deposition[J]. Optics & Laser Technology, 2023, 163: 109386. |
100 | VYATSKIKH A L, WANG X, HALEY J, et al. Residual stress mitigation in directed energy deposition[J]. Materials Science and Engineering: A, 2023, 871: 144845. |
101 | ZHANG H, XU W, XU Y J, et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): Experiment and simulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 461-474. |
102 | KRUTH J P, DECKERS J, YASA E, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(6): 980-991. |
103 | ZHOU L B, SUN J S, CHEN J, et al. Study of substrate preheating on the microstructure and mechanical performance of Ti-15Mo alloy processed by selective laser melting[J]. Journal of Alloys and Compounds, 2022, 928: 167130. |
104 | CHEN L, GU P F, GE T, et al. Effect of laser shock peening on microstructure and mechanical properties of TiC strengthened inconel 625 alloy processed by selective laser melting[J]. Materials Science and Engineering: A, 2022, 835: 142610. |
105 | ZHAI W G, ZHOU W, NAI S M L. Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting[J]. Materials Science and Engineering: A, 2022, 832: 142460. |
106 | 谭晓明, 张丹峰, 战贵盼, 等. 海洋环境与疲劳载荷联合作用下喷丸超高强度钢损伤机制[J]. 航空学报, 2020, 41(8): 223631. |
TAN X M, ZHANG D F, ZHAN G P, et al. Damage mechanism of shot peened ultra-high strength steel under combined action of marine environment and fatigue load[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 223631 (in Chinese). | |
107 | 陈跃良, 陈亮, 卞贵学, 等. 先进舰载战斗机腐蚀防护控制与日历寿命设计[J]. 航空学报, 2021, 42(8): 525786. |
CHEN Y L, CHEN L, BIAN G X, et al. Corrosion protection control and calendar life design of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525786 (in Chinese). | |
108 | GAO Y, CHONG K, QIAO L J, et al. Synthesis and corrosion behavior of Mo15Nb20Ta10Ti35V20 refractory high entropy alloy[J]. Materials & Design, 2023, 228: 111820. |
109 | PEIGHAMBARDOUST N S, ALAMDARI A A, UNAL U, et al. In vitro biocompatibility evaluation of Ti1.5ZrTa0.5Nb0.5Hf0.5 refractory high-entropy alloy film for orthopedic implants: Microstructural, mechanical properties and corrosion behavior[J]. Journal of Alloys and Compounds, 2021, 883: 160786. |
110 | WANG G Y, XU J, CHEN Y H, et al. Assessment of the tribocorrosion performance of a (TiZrNbTaMo)C refractory high entropy alloy carbide coating in a marine environment[J]. Journal of Alloys and Compounds, 2023, 965: 171342. |
111 | RON T, LEON A, POPOV V, et al. Synthesis of refractory high-entropy alloy WTaMoNbV by powder bed fusion process using mixed elemental alloying powder[J]. Materials, 2022, 15(12): 4043. |
/
〈 |
|
〉 |