肼基单组元火箭发动机的动态响应
收稿日期: 2023-06-14
修回日期: 2023-07-11
录用日期: 2023-09-13
网络出版日期: 2023-09-22
基金资助
国家科技重大专项(J2019-V-0001-0092)
Dynamic response of hydrazine⁃based monocomponent rocket engine
Received date: 2023-06-14
Revised date: 2023-07-11
Accepted date: 2023-09-13
Online published: 2023-09-22
Supported by
National Science and Technology Major Project(J2019-V-0001-0092)
单组元火箭发动机是航天器姿态调整和轨道控制的重要元件。针对肼基单组元火箭发动机对入口流量变化形式的动态响应,建立发动机推力室内推进剂的流动、分解和传热仿真模型,并利用这些模型对发动机进行了3种不同推进剂供给方式(稳态式供给、线性式供给和脉冲式供给)的数值模拟与计算分析。计算结果表明:发动机各点的温度会因位置差异而对入口流量的响应变化存在不同。压强、速度和推力对入口流量变化的响应非常迅速,三者在总体上的变化趋势与入口流量的变化趋势保持同步。速度和推力在稳态式供给和脉冲式供给中都存在高于起动阶段稳定值的尖峰,在稳态式供给中,速度和推力尖峰分别高出起动阶段稳定值的8.6%和4.7%,在脉冲式供给中,第1次脉冲阶段,速度和推力尖峰分别高出起动阶段稳定值的6.2%和3.0%,第2次脉冲阶段,速度和推力尖峰分别高出起动阶段稳定值的9.3%和5.2%。
蒋耀东 , 徐全勇 , 马玉林 , 程瑶 . 肼基单组元火箭发动机的动态响应[J]. 航空学报, 2023 , 44(21) : 529170 -529170 . DOI: 10.7527/S1000-6893.2023.29170
Monocomponent rocket engines are important elements for attitude adjustment and orbit control of space-craft. According to the dynamic response of hydrazine-based monocomponent rocket engine to the change form of inlet flow, a simulation model of propellant flow, decomposition and heat transfer in the thrust chamber of the engine is established, and the numerical simulation and calculation analysis of three different propellant supply modes (steady-state supply, linear supply and pulse supply) of the engine are carried out by using these models. The result is that the temperature at each point of the engine will vary in response to the inlet flow due to the difference in position. The response of pressure, velocity and thrust to changes in inlet flow rate is very rapid, and the overall trend of the three remains synchronized with the trend of inlet flow rate changes. There are spikes in velocity and thrust that are higher than the stable values during the start-up phase in both steady-state and pulse supply, in the steady-state supply, the velocity and thrust spikes are 8.6% and 4.7% higher than the stable value of the start-up phase, respectively, in the pulsed supply, the velocity and thrust spikes are 6.2% and 3.0% higher than the stable value of the start-up phase, respectively, in the first pulse phase, the velocity and thrust spikes are 6.2% and 3.0% higher than the stable value of the start-up phase, respectively, and the second pulse phase, the velocity and thrust spikes are 9.3% and 5.2% higher than the stable value of the start-up phase, respectively.
Key words: hydrazine; dynamic response; propellant supply; thrust; monocomponent rocket engine
1 | 刘川, 刘俊, 邱鑫, 等. 火星探测器推进系统初步设想[J]. 火箭推进, 2014, 40(2): 44-48. |
LIU C, LIU J, QIU X, et al. Preliminary design of propulsion system for Mars exploration[J]. Journal of Rocket Propulsion, 2014, 40(2): 44-48 (in Chinese). | |
2 | BAKER R S, CASILLAS A R, GUERNSEY C S, et al. Mars science laboratory descent-stage integrated propulsion subsystem: Development and flight performance[J]. Journal of Spacecraft and Rockets, 2014, 51(4): 1217-1226. |
3 | HAN D I, HAN C Y, SHIN H D. Empirical and computational performance prediction for monopropellant hydrazine thruster employed for satellite[J]. Journal of Spacecraft and Rockets, 2009, 46(6): 1186-1195. |
4 | HOU B L, WANG X D, LI T, et al. Steady-state behavior of liquid fuel hydrazine decomposition in packed bed[J]. AIChE Journal, 2015, 61(3): 1064-1080. |
5 | 湛建阶, 陈朝辉. 肼类分解催化剂研究进展[J]. 材料导报, 2007, 21(2): 62-66, 71. |
CHEN J J, CHEN Z H. Progress in research on hydrazine decomposition catalysts[J]. Materials Review, 2007, 21(2): 62-66, 71 (in Chinese). | |
6 | 周汉申. 单组元催化分解发动机参数设计[J]. 上海航天, 1990, 7(5): 8-15. |
ZHOU H S. Parameter design of monocomponent cata lytic decomposition engine[J]. Aerospace Shanghai, 1990, 7(5): 8-15 (in Chinese). | |
7 | GOHARDANI A S, STANOJEV J, DEMAIRé A, et al. Green space propulsion: Opportunities and prospects[J]. Progress in Aerospace Sciences, 2014, 71: 128-149. |
8 | 冯强. 单组元推进剂喷注与分解对发动机性能的影响[D]. 大连: 大连理工大学, 2021: 20-34. |
FENG Q. Influence of propellant injection and decomposition on monopropellant engine[D]. Dalian: Dalian University of Technology, 2021: 20-34 (in Chinese). | |
9 | GUAN J W, LI G X, LI H M, et al. Effect of catalytic bed porosity and mass flow rate on decomposition and combustion processes of a HAN-Based monopropellant thruster[J]. Vacuum, 2021, 194: 110566. |
10 | ZHANG T, LI G X, YU Y S, et al. Numerical simulation of ammonium dinitramide (ADN)-based non-toxic aerospace propellant decomposition and combustion in a monopropellant thruster[J]. Energy Conversion and Management, 2014, 87: 965-974. |
11 | 郭堂松. HAN基单组元推力器结构参数优化设计的仿真研究[D]. 北京: 北京交通大学, 2021: 41-67. |
GUO T S. Simulation study on optimization design of structural parameters of HAN-based single component thruster[D]. Beijing: Beijing Jiaotong University, 2021: 41-67 (in Chinese). | |
12 | 汪双庆. ADN基单组元推力器工作过程中催化分解及燃烧特性仿真研究[D]. 北京: 北京交通大学, 2017: 75-98. |
WANG S Q. Simulation research on catalytic decomposition and combustion characteristics of ADN-based monopropellant thruster[D]. Beijing: Beijing Jiaotong University, 2017: 75-98 (in Chinese). | |
13 | 于泽游. HAN基单组元火箭发动机流动与传热仿真研究[D]. 大连: 大连理工大学, 2019: 32-34. |
YU Z Y. Numerical simulation on flow and heat transfer of Han-based monopropellant rocket engine[D]. Dalian: Dalian University of Technology, 2019: 32-34 (in Chinese). | |
14 | 金东洙. HAN基单组元发动机仿真模型研究[D]. 大连: 大连理工大学, 2018: 31-36. |
JIN D Z. Numerical simulation model of HAN-based mono-propellant rocket engine[D]. Dalian: Dalian University of Technology, 2018: 31-36 (in Chinese). | |
15 | 张阿莉, 刘国西, 张涛, 等. 流阻对200N单推-3发动机热试车工作特性的影响[J]. 推进技术, 2023, 2(3): 1-14. |
ZHANG A L, LIU G X, ZHANG T, et al. Effect of flow resistance on the working characteristics of hot test of 200N single push-3 engine[J]. Propulsion Technology, 2023, 2(3): 1-14 (in Chinese). | |
16 | 冀鹏, 梁树强, 肖明杰, 等. 高床载单组元肼发动机冷起动过程仿真研究[J]. 科学技术与工程, 2021, 21(32): 13992-13997. |
JI P, LIANG S Q, XIAO M J, et al. Simulation of cold starting transient characteristics of high bed-load monopropellant hydrazine thruster[J]. Science Technology and Engineering, 2021, 21(32): 13992-13997 (in Chinese). | |
17 | 冀鹏, 雷凡培, 梁树强, 等. 肼类单组元发动机冷起动过程温度敏感性研究[J]. 导弹与航天运载技术, 2021(6): 21-26. |
JI P, LEI F P, LIANG S Q, et al. Investigation on the sensitivity of cold starting process of monopropellant hydrazine thruster to initial temperature[J]. Missiles and Space Vehicles, 2021(6): 21-26 (in Chinese). | |
18 | 汪凤山, 姚兆普, 刘阳, 等. 甲基肼/四氧化二氮发动机脉冲工况仿真与试验研究[J]. 空间控制技术与应用, 2021, 47(4): 56-62. |
WANG F S, YAO Z P, LIU Y, et al. Numerical and experimental analysis of pulse mode characteristics in a MMH/NTO rocket engine[J]. Aerospace Control and Application, 2021, 47(4): 56-62 (in Chinese). | |
19 | 李军, 常克宇, 陈展, 等. 针栓喷注器液氧/甲烷推力室设计及试验研究[J]. 推进技术, 2022, 43(11): 19-24. |
LI J, CHANG K Y, CHEN Z, et al. Design and experimental study of liquid oxygen/methane thrust chamber for pintle injector[J]. Journal of Propulsion Technology, 2022, 43(11): 19-24 (in Chinese). | |
20 | 陈君. 二硝酰胺铵(ADN)基液体推进剂催化分解及高压燃烧反应的试验与计算研究[D]. 北京: 北京交通大学, 2018: 39-58. |
CHEN J. Experimental and computational study of catalytic decomposition and high pressure combustion reaction based on ammonium dinitramide(ADN) liquid propellant[D]. Beijing: Beijing Jiaotong University, 2018: 39-58 (in Chinese). | |
21 | 王超, 周旭东, 汤建华, 等. 单组元肼推力器温度场仿真及试验[J]. 推进技术, 2005, 26(1): 1-4. |
WANG C, ZHOU X D, TANG J H, et al. Numerical and experimental studies for temperature field of monopropellant hydrazine thruster[J]. Journal of Propulsion Technology, 2005, 26(1): 1-4 (in Chinese). | |
22 | 冀鹏, 肖明杰, 梁树强. 单组元姿控动力系统动态过程仿真研究[J]. 兵器装备工程学报, 2022, 43(1): 114-119. |
JI P, XIAO M J, LIANG S Q. Simulation study on transient process of monopropellant attitude control propulsion system[J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 114-119 (in Chinese). | |
23 | SUN D C, LIU J, XIANG W B. Numerical simulation of the transient process of monopropellant rocket engines[J]. Aerospace Science and Technology, 2020, 103: 105921. |
24 | 孙得川, 金东洙, 于泽游. 硝酸羟胺基单组元发动机起动过程数值模拟[J]. 兵器装备工程学报, 2018, 39(5): 5-10. |
SUN D C, JIN D Z, YU Z Y. Numerical simulation of start-up process for HAN-based monopropellant rocket engine[J]. Journal of Ordnance Equipment Engineering, 2018, 39(5): 5-10 (in Chinese). | |
25 | 孙得川, 姚天亮. 硝酸羟胺基单组元液体火箭发动机起动过程的模拟[J]. 推进技术, 2020, 41(1): 58-64. |
SUN D C, YAO T L. Simulation of start-up transient process for hydroxylamine nitrate-based liquid monopropellant rocket engine[J]. Journal of Propulsion Technology, 2020, 41(1): 58-64 (in Chinese). | |
26 | 曹梦成. 无毒单组元液体火箭发动机起动过程研究[D]. 大连: 大连理工大学, 2017: 52-60. |
CAO M C. Research on start process of non-toxic mono-propellant liquid rocket engine[D]. Dalian: Dalian University of Technology, 2017: 52-60 (in Chinese). | |
27 | PAKDEHI S, SHIRVANI F, ZOLFAGHARI R. A thermodynamic study on catalytic decomposition of hydrazine in a space thruster[J]. Archives of Thermodynamics, 2019, 40(4): 151-166. |
28 | KONNOV A A, DE RUYCK J. Kinetic modeling of the decomposition and flames of hydrazine[J]. Combustion and Flame, 2001, 124(1-2): 106-126. |
29 | MAKLED A E, BELAL H. Modeling of hydrazine decomposition for monopropellant thrusters[J]. Aviation Technology, 2009, 13(22): 26-28. |
30 | COBOS C J, GLARBORG P, MARSHALL P, et al. Re-evaluation of rate constants for the reaction N2H4 (+ M) ? NH2 + NH2 (+ M)[J]. Combustion and Flame, 2022: 112374. |
31 | 周汉申. 单组元液体火箭发动机设计与研究[M].北京:中国宇航出版社, 2009. |
ZHOU H S. Design and research of single-component liquid rocket engines[M]. Beijing: China Astronautic Publishing House, 2009 (in Chinese). | |
32 | ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94. |
/
〈 |
|
〉 |