综述

空天飞行器可调进气系统关键问题研究进展

  • 王子运 ,
  • 于航 ,
  • 张悦 ,
  • 谭慧俊 ,
  • 金毅 ,
  • 李鑫
展开
  • 南京航空航天大学 能源与动力学院 南京 210016
.E-mail: tanhuijun@nuaa.edu.cn

收稿日期: 2023-08-14

  修回日期: 2023-09-05

  录用日期: 2023-10-10

  网络出版日期: 2023-11-07

基金资助

国家自然科学基金(12172175);国家科技重大专项(J2019-II-0014-0035);江苏省科协青年科技人才托举工程(TJ-2021-052);国家资助博士后研究人员计划(GZB20230970)

Research progress on key issues of adjustable inlet system for aerospace vehicles

  • Ziyun WANG ,
  • Hang YU ,
  • Yue ZHANG ,
  • Huijun TAN ,
  • Yi JIN ,
  • Xin LI
Expand
  • College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2023-08-14

  Revised date: 2023-09-05

  Accepted date: 2023-10-10

  Online published: 2023-11-07

Supported by

National Natural Science Foundation of China(12172175);National Science and Technology Major Project(J2019-II-0014-0035);Young Scientific and technological Talents Project of Jiangsu Association for Science and Technology(TJ-2021-052);Postdoctoral Fellowship Program of CPSF(GZB20230970)

摘要

空天飞行器未来在军民诸多领域均能够扮演极其重要的角色,其关键技术之一便是能够在大气层内提供动力的吸气式组合循环发动机。进气道作为吸气式组合循环发动机的关键部件,迫切需要解决几何/气动大范围调节需求、宽域内流的精细化组织和预测需求以及发动机多模态间的平稳转换需求。为回应上述3大需求,可调进气系统需要在定几何/变几何调节技术、激波主导流动机理及控制技术、模态转换中流场动态演化特性这3个方面加深研究。就研究现状而言,转动是二元进气道的主要调节方式;平动是轴对称进气道的主要调节实现方式;变形调节对于二元和轴对称可调进气道均具有重要的补充和辅助价值。国内外研究人员对于激波/边界层干扰机理、进气道喘振机理、不起动/再起动迟滞机理等均建立了较为深刻的认识,在不起动/再起动边界的建模与预测方面也取得了相当大的进展,边界层放气依然是对激波主导流动中各种不利现象的有效控制措施。在模态转化方面,外并联组合进气道流道间的耦合干扰较弱,内并联组合进气道则表现出较为明显的流道间耦合干扰。未来,还应重点发展高效轻质的进气道调节技术,努力建立面向宽域可调进气道的快速设计体系,加强模态转换过程中进气道复杂内流机理研究,并积极与发动机控制学科交叉,突破智能化进气道调控技术,支撑我国空天飞行器的研制迈上新的台阶。

本文引用格式

王子运 , 于航 , 张悦 , 谭慧俊 , 金毅 , 李鑫 . 空天飞行器可调进气系统关键问题研究进展[J]. 航空学报, 2024 , 45(11) : 529440 -529440 . DOI: 10.7527/S1000-6893.2023.29440

Abstract

Aerospace vehicles are expected to play extremely important roles in military and civilian applications. One of the key technologies is the airbreathing combined-cycle engine that provides propulsion within the atmosphere. As a key component of the air-breathing combined-cycle engine, the air inlet urgently requires solutions to broad geometric/aerodynamic adjustment requirements, the intricate organization and prediction needs of wide-area internal flow, and the smooth transition demands between multiple engine modes. In response to these three major needs, the variable air inlet system necessitates further research in fixed geometric/variable geometric adjustment technology, shock-dominated flow physics and flow control technology, and the dynamic evolution characteristics of the flow field during mode transition. Regarding the current state of research, rotation is the primary adjustment method for rectangular inlets; translation is the principal adjustment implementation method for axisymmetric inlets; deformable modulation holds a significant complementary and auxiliary value for both rectangular and axis-symmetric adjustable inlets. Researchers, both domestically and internationally, have gained a deep understanding of shock wave/boundary layer interactions, inlet buzz mechanisms, and unstart/restart hysteresis mechanisms, and made considerable progress in the modelling and prediction of the unstart/restart boundaries. Boundary layer bleeding remains an effective control measure against various detrimental phenomena in shock-dominated flows. In terms of mode transition, external over-under inlets exhibit relatively weak inter-flowpath coupling interaction, whereas internal over-under inlets display more significant inter-flowpath coupling effects. In the future, emphasis should be placed on developing efficient and lightweight adjustment technology, establishing a rapid design system for wide-envelope adjustable inlets, strengthening research on complex internal flow mechanisms during mode transition, and actively intersecting with engine control disciplines to break through intelligent inlet control technology, thereby supporting the development of China’s aerospace vehicles to a new level.

参考文献

1 王长青. 空天飞行技术创新与发展展望[J]. 宇航学报202142(7): 807-819.
  WANG C Q. Technological innovation and development prospect of aerospace vehicle[J]. Journal of Astronautics202142(7): 807-819 (in Chinese).
2 魏毅寅. 组合动力空天飞行若干科技关键问题[J]. 空天技术2022(1): 1-12.
  WEI Y Y. Major technological issues of aerospace vehicle with combined-cycle propulsion[J]. Aerospace Technology2022(1): 1-12 (in Chinese).
3 董芃呈, 韩玉琪, 刘金超. 宽适应性高超声速空天动力技术发展分析[J]. 航空动力2020(6): 25-30.
  DONG P C, HAN Y Q, LIU J C. Development analysis of hypersonic aerospace power technology with wide adaptability[J]. Aerospace Power2020(6): 25-30 (in Chinese).
4 张灿, 胡冬冬, 叶蕾, 等. 2017年国外高超声速飞行器技术发展综述[J]. 战术导弹技术2018(1): 47-50, 78.
  ZHANG C, HU D D, YE L, et al. Review of the development of hypersonic vehicle technology abroad in 2017[J]. Tactical Missile Technology2018(1): 47-50, 78 (in Chinese).
5 康开华, 付丽. 美国军用空天飞机作战应用研究[J]. 飞航导弹2021(12): 104-110.
  KANG K H, FU L. Research on operational application of American military space plane[J]. Aerodynamic Missile Journal2021(12): 104-110 (in Chinese).
6 梅东牧, 林鹏, 王战. 吸气式空天飞机对TBCC动力的需求分析[J]. 燃气涡轮试验与研究201326(6): 12-14, 30.
  MEI D M, LIN P, WANG Z. Requirements for TBCC propulsion of air-breathing aerospace vehicle[J]. Gas Turbine Experiment and Research201326(6): 12-14, 30 (in Chinese).
7 尹泽勇, 蔚夺魁, 徐雪. 高马赫数涡轮基推进系统的发展及挑战[J]. 航空发动机202147(4): 1-7.
  YIN Z Y, YU D K, XU X. Development trend and technical challenge of high Mach number turbine based propulsion system[J]. Aeroengine202147(4): 1-7 (in Chinese).
8 金捷, 陈敏, 刘玉英, 等. 涡轮基组合循环发动机[M]. 北京: 国防工业出版社, 2019.
  JIN J, CHEN M, LIU Y Y, et al. Turbine based combined cycle engine[M]. Beijing: National Defense Industry Press, 2019 (in Chinese).
9 SNYDER L, ESCHER D, DEFRANCESCO R, et al. Turbine based combination cycle (TBCC) propulsion subsystem integration: AIAA-2004-3649 [R].Reston: AIAA, 2004.
10 何国强, 秦飞. 火箭基组合循环发动机[M]. 北京: 国防工业出版社, 2019.
  HE G Q, QIN F. Rocket based combined cycle engine[M]. Beijing: National Defense Industry Press, 2019 (in Chinese).
11 VARVILL R, BOND A. The SKYLON spaceplane[J]. Journal of the British Interplanetary Society200457: 22-32.
12 南向谊, 王拴虎, 李平. 空气涡轮火箭发动机研究的进展及展望[J]. 火箭推进200834(6): 31-35.
  NAN X Y, WANG S H, LI P. Investigation on status and prospect of air turbine rocket[J]. Journal of Rocket Propulsion200834(6): 31-35 (in Chinese).
13 胡勇. 空气涡轮火箭组合发动机总体方案研究与优化设计[D]. 长沙: 国防科学技术大学, 2013.
  HU Y. Design and optimization research on air turbo rocket[D].Changsha: National University of Defense Technology, 2013 (in Chinese).
14 南向谊, 刘轶, 马元, 等. 空气涡轮火箭发动机热力过程及工作特性[J]. 空气动力学学报202240(1): 181-189.
  NAN X Y, LIU Y, MA Y, et al. Thermodynamic process and operating characteristics of air turbo rocket engine[J]. Acta Aerodynamica Sinica202240(1): 181-189 (in Chinese).
15 韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J]. 推进技术201738(2): 298-305.
  WEI B X, LING W H, GANG Q, et al. Analysis of key technologies and propulsion performance research of TRRE engine[J]. Journal of Propulsion Technology201738(2): 298-305 (in Chinese).
16 刘大响. 航空燃气涡轮发动机稳定性设计与评定技术[M]. 北京: 航空工业出版社, 2004: 4.
  LIU D X. Stability design and evaluation technology of aviation gas turbine engine[M]. Beijing: Aviation Industry Press, 2004: 4 (in Chinese).
17 THOMAS S R. TBCC discipline overview. hypersonics project[C]∥2011 Technical Conference. 2011.
18 谢旅荣, 郭荣伟. 定几何混压式轴对称超声速进气道气动特性数值仿真和实验验证[J]. 航空学报200728(1): 78-83.
  XIE L R, GUO R W. Numerical simulation and experimental validation of flow in mixed-compression axisymmetric supersonic inlet with fixed-geometry[J]. Acta Aeronautica et Astronautica Sinica200728(1): 78-83 (in Chinese).
19 TAO Y, LIU W D, FAN X Q, et al. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge[J]. Physics of Fluids201729(7): 071701.
20 黄河峡. 背景激波系干扰下隔离段内激波串特性及其控制研究[D]. 南京: 南京航空航天大学, 2018.
  HUANG H X. Behaviors of shock train in isolator with background shocks and its control[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
21 凌文辉, 侯金丽, 韦宝禧, 等. 空天组合动力技术挑战及解决途径的思考[J]. 推进技术201839(10): 2171-2176.
  LING W H, HOU J L, WEI B X, et al. Technical challenge and potential solution for aerospace combined cycle engine[J]. Journal of Propulsion Technology201839(10): 2171-2176 (in Chinese).
22 ERDEM E, YANG L C, KONTIS K. Flow control using thermal bumps in hypersonic flow: AIAA-2010-1098 [R]. Reston: AIAA, 2010.
23 FALEMPIN F, FIRSOV A A, YARANTSEV D A, et al. Plasma control of shock wave configuration in off-design mode of M= 2 inlet[J]. Experiments in Fluids201556(54): 1-10.
24 MACHERET S O, SHNEIDER M N, MILES R B. Scramjet inlet control by off-body energy addition: A virtual cowl[J]. AIAA Journal200442(11): 2294-2302.
25 李程鸿. 一类流体式高超声速可调进气道的气动原理及验证研究[D]. 南京: 南京航空航天大学, 2015.
  LI C H. Aerodynamic mechanism and validation of A fluidically variable hypersonic inlet[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese).
26 MACHERET S O, SHNEIDER M N, MILES R B. Magnetohydrodynamic control of hypersonic flows and scramjet inlets using electron beam ionization[J]. AIAA Journal200240: 74-81.
27 ALLEN J L. Performance of an inlet having a variable-angle two-dimensional compression surface and a fixed-geometry subsonic diffuser for application to reduced engine rotative speeds-Mach number 0.66, 1.5, 1.7, and 2.0[R]. Washington, D.C.: NACA, 1958.
28 刘兴洲. 飞航导弹动力装置(上)[M]. 北京: 中国宇航出版社, 1992.
  LIU X Z. Aircraft missile power plant (I)[M]. Beijing: China Aerospace Press, 1992 (in Chinese).
29 KOJIMA T, TAGUCHI H, AOKI T, et al. Development study of the air-intake of the ATREX engine[C]∥12th AIAA International Space Planes and Hypersonic Systems and Technologies. 2003: 7042.
30 BEHEIM M A, GERTSMA L W. Performance of variable two-dimensional inlet designed for engine-inlet matching I - Performance at design Mach number of 3.07[R]. Washington, D.C.: NACA, 1956.
31 SAUNDERS D, SLATER J, DIPPOLD V F, et al. TBCC inlet experiments and analysis[C]∥FAP Annual Review, 2007.
32 谭慧俊, 庄逸, 凌棫, 等. 一种刚性/柔性组合调节的连续可调进气道及控制方法: CN107191273B[P]. 2018-12-14.
  TAN H J, ZHUANG Y, LING Y, et al. Continuous adjustable air inlet channel adopting rigidity and flexibility combined adjustment and control method: CN107191273B[P]. 2018-12-14 (in Chinese).
33 孙姝, 王晨曦, 谭慧俊, 等. 一种刚性/柔性结合的连续可调进气道的设计方法: CN107341323B[P]. 2019-05-28.
  SUN S, WANG C X, TAN H J, et al. Rigidity/flexibility combined continuous variable inlet duct design method: CN107341323B[P]. 2019-05-28 (in Chinese).
34 邬凤林. 宽范围可调内转进气道设计方法研究[D]. 南京: 南京理工大学, 2017.
  WU F L. Study on design method of wide range adjustable internal rotation inlet[D]. Nanjing: University of Science and Technology, 2017 (in Chinese).
35 闵浩, 孙波, 李嘉新, 等. 一种内并联型内转进气道通道间干扰特性研究[J]. 推进技术201839(12): 2695-2702.
  MIN H, SUN B, LI J X, et al. Investigation on interference characteristics among channels of a over-under inward turning inlet[J]. Journal of Propulsion Technology201839(12): 2695-2702 (in Chinese).
36 郭峰, 桂丰, 尤延铖, 等. 一种涡轮基组合动力的整机低速风洞试验研究[J]. 推进技术201940(11): 2436-2443.
  GUO F, GUI F, YOU Y C, et al. Experimental study of TBCC engine performance in low speed wind tunnel[J]. Journal of Propulsion Technology201940(11): 2436-2443 (in Chinese).
37 朱伟, 王霄, 华正旭, 等. 宽速域组合动力TBCC新型三维内转式进气道设计分析[J]. 飞机设计201939(3): 13-17, 38.
  ZHU W, WANG X, HUA Z X, et al. The design and analysis of wide speed range turbine based combine cycle three-dimensional inward turning inlet[J]. Aircraft Design201939(3): 13-17, 38 (in Chinese).
38 何墨凡. 内转式TBCC进气道气动设计与分析[D]. 南京: 南京航空航天大学, 2020.
  HE M F. Aerodynamic design and analysis of TBCC inward-turning inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
39 ZHANG Y, TAN H J, LI J F, et al. Ramp shock regulation of supersonic inlet with shape memory alloy plate[J]. AIAA Journal201856(4): 1696-1702.
40 张悦, 谭慧俊, 李博, 等. 基于柔性中心体的轴对称可调超声速进气道的设计方法: CN107091159B[P]. 2018-07-31.
  ZHANG Y, TAN H J, LI B, et al. Design method of axial symmetry adjustable ultrasonic air inlet way based on flexible center body: CN107091159B[P]. 2018-07-31 (in Chinese).
41 FERRERO A. Control of a supersonic inlet in off-design conditions with plasma actuators and bleed[J]. Aerospace20207(3): 32.
42 HAWS R G, NOALL J S, DAINES R L. Computational investigation of a method to compress air fluidically in supersonic inlets[J]. Journal of Spacecraft and Rockets200138(1): 51-59.
43 程代姝, 张悦, 高婉宁, 等. 结合局部次流循环的变几何轴对称进气道研究[J]. 推进技术201940(9): 2003-2011.
  CHENG D S, ZHANG Y, GAO W N, et al. Investigation of a variable axisymmetric inlet with local secondary flow recirculation[J]. Journal of Propulsion Technology201940(9): 2003-2011 (in Chinese).
44 SHNEIDER M, MACHERET S, MILES R. Comparative analysis of MHD and plasma methods of scramjet inlet control: AIAA-2003-0170 [R]. Reston: AIAA, 2003.
45 KULKARNI N V, PHAN M Q. Performance optimization of the magnetohydrodynamic generator at the scramjet inlet[J]. Journal of Propulsion and Power200521(5): 822-830.
46 YUE L J, JIA Y N, XU X, et al. Effect of cowl shock on restart characteristics of simple ramp type hypersonic inlets with thin boundary layers[J]. Aerospace Science and Technology201874: 72-80.
47 HUANG H X, TAN H J, CAI J, et al. Restart processes of rectangular hypersonic inlets with different internal contraction ratios[J]. AIAA Journal202159(7): 2427-2439.
48 VAN WIE D, KWOK F, WALSH R. Starting characteristics of supersonic inlets: AIAA-1996-2914 [R].Reston: AIAA, 1996.
49 田珊珊, 金亮, 杜兆波, 等. 基于鼓包的激波/边界层干扰控制研究进展[J]. 航空学报202344(18): 028411.
  TIAN S S, JIN L, DU Z B, et al. Research progress of shock wave/boundary layer interaction controls induced by bump[J]. Acta Aeronautica et Astronautica Sinica202344(18): 028411 (in Chinese).
50 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报202142(6): 025371.
  WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica202142(6): 025371 (in Chinese).
51 张悦, 谭慧俊, 王子运, 等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术202041(2): 241-259.
  ZHANG Y, TAN H J, WANG Z Y, et al. Progress of shock wave/boundary layer interaction and its control in inlet[J]. Journal of Propulsion Technology202041(2): 241-259 (in Chinese).
52 CURRAN E T, MURTHY S N B. Scramjet propulsion[M]. Reston:AIAA, 2001.
53 SUN S, ZHANG H Y, CHENG K M, et al. The full flowpath analysis of a hypersonic vehicle[J]. Chinese Journal of Aeronautics200720(5): 385-393.
54 RODI P E, EMAMI S, TREXLER C A. Unsteady pressure behavior in a ramjet/scramjet inlet[J]. Journal of Propulsion and Power199612(3): 486-493.
55 TAN H J, LI L G, WEN Y F, et al. Experimental investigation of the unstart process of a generic hypersonic inlet[J]. AIAA Journal201149(2): 279-288.
56 FISHER S A, NEALE M C, BROOKS A J. On the sub-critical stability of variable ramp intakes at Mach numbers around 2: R.&M. No. 3711 [R]. London: Her Majesty’s Stationery Office, 1972.
57 TRAPIER S, DUVEAU P, DECK S. Experimental study of supersonic inlet buzz[J]. AIAA Journal200644(10): 2354-2365.
58 TAN H J, SUN S, YIN Z L. Oscillatory flows of rectangular hypersonic inlet unstart caused by downstream mass-flow choking[J]. Journal of Propulsion and Power200925(1): 138-147.
59 LEE H J, LEE B J, KIM S D, et al. Flow characteristics of small-sized supersonic inlets[J]. Journal of Propulsion and Power201127(2): 306-318.
60 CHIMA R. Analysis of buzz in a supersonic inlet[R]. Washington, D.C.: NASA, 2012.
61 WANG C P, YANG X, XUE L S, et al. Correlation analysis of separation shock oscillation and wall pressure fluctuation in unstarted hypersonic inlet flow[J]. Aerospace20196(1): 8.
62 SOLTANI M R, SEPAHI-YOUNSI J. Buzz cycle description in an axisymmetric mixed-compression air intake[J]. AIAA Journal201654(3): 1040-1053.
63 WAGNER J L, YUCEIL K B, VALDIVIA A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow[J]. AIAA Journal200947(6): 1528-1542.
64 LU P J, JAIN L T. Numerical investigation of inlet buzz flow[J]. Journal of Propulsion and Power199814(1): 90-100.
65 MOASE W H, BREAR M J, MANZIE C. The forced response of choked nozzles and supersonic diffusers[J]. Journal of Fluid Mechanics2007585: 281-304.
66 ROBINET J C, CASALIS G. Shock oscillations in diffuser modeled by a selective noise amplification[J]. AIAA Journal199937: 453-459.
67 ROCKWELL D, NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics197911: 67-94.
68 ROCKWELL D. Oscillations of impinging shear layers[J]. AIAA Journal198321(5): 645-664.
69 MEIER G E A, SZUMOWSKI A P, SELEROWICZ W C. Self-excited oscillations in internal transonic flows[J]. Progress in Aerospace Sciences199027(2): 145-200.
70 FESZTY D, BADCOCK K J, RICHARDS B E. Driving mechanisms of high-speed unsteady spiked body flows, part I: Pulsation mode[J]. AIAA Journal200442(1): 95-106.
71 TRAPIER S, DECK S, DUVEAU P. Delayed detached-eddy simulation and analysis of supersonic inlet buzz[J]. AIAA Journal200846(1): 118-131.
72 OH J Y, MA F H, HSIEH S Y, et al. Interactions between shock and acoustic waves in a supersonic inlet diffuser[J]. Journal of Propulsion and Power200521(3): 486-495.
73 WONG H Y W. Overview of flow oscillations in transonic and supersonic nozzles[J]. Journal of Propulsion and Power200622(4): 705-720.
74 CHANG J T, WANG L, BAO W, et al. Novel oscillatory patterns of hypersonic inlet buzz[J]. Journal of Propulsion and Power201228(6): 1214-1221.
75 LI Z F, GAO W Z, JIANG H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal201351(10): 2485-2492.
76 ZHANG Q F, TAN H J, CHEN H, et al. Unstart process of a rectangular hypersonic inlet at different Mach numbers[J]. AIAA Journal201654(12): 3681-3691.
77 MOLDER S, TIMOFEEV E, TAHIR R. Flow starting in high compression hypersonic air inlets by mass spillage: AIAA-2004-4130[R].Reston: AIAA, 2004.
78 SUN B, ZHANG K Y. Empirical equation for self-starting limit of supersonic inlets[J]. Journal of Propulsion and Power201026(4): 874-875.
79 XIE W Z, MA G F, GUO R W, et al. Flow-based prediction for self-starting limit of two-dimensional hypersonic inlets[J]. Journal of Propulsion and Power201632(2): 463-471.
80 DEVARAJ M K K, JUTUR P, RAO S M V, et al. Experimental investigation of unstart dynamics driven by subsonic spillage in a hypersonic scramjet intake at Mach 6[J]. Physics of Fluids202032(2): 026103.
81 JIN Y, SUN S, TAN H J, et al. Flow response hysteresis of throat regulation process of a two-dimensional mixed-compression supersonic inlet[J]. Chinese Journal of Aeronautics202235(3): 112-127.
82 LIU Y, WANG L, QIAN Z S. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology201879: 647-657.
83 REARDON J P, SCHETZ J A, LOWE K T. Computational analysis of unstart in variable-geometry inlet[J]. Journal of Propulsion and Power202137(4): 564-576.
84 SANDERS B, WEIR L. Aerodynamic design of a dual-flow Mach 7 hypersonic inlet system for a turbine-based combined-cycle hypersonic propulsion system[R]. Washington, D. C.: NASA, 2008.
85 LIU K L, ZHANG K Y. Numerical investigation of 2-D hypersonic inlet starting characteristic caused by dynamic angle-of-attack: AIAA-2010-7034 [R].Reston: AIAA, 2010.
86 WANG W X, GUO R W. Numerical study of unsteady starting characteristics of a hypersonic inlet[J]. Chinese Journal of Aeronautics201326(3): 563-571.
87 张晓飞, 徐惊雷, 俞凯凯. 大内收缩比进气道加速起动过程中喘振特性研究[J]. 推进技术201839(7): 1494-1503.
  ZHANG X F, XU J L, YU K K. Study of oscillation characteristics of inlet with high internal contraction ratio in acceleration process[J]. Journal of Propulsion Technology201839(7): 1494-1503 (in Chinese).
88 金毅. 二元可调进气道不起动/再起动流动机理与边界建模研究[D]. 南京: 南京航空航天大学, 2023.
  JIN Y. Research on flow mechanism and boundary modeling of unstart/restart process for a two-dimensional variable inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023 (in Chinese).
89 袁化成, 梁德旺. 高超声速进气道再起动特性分析[J]. 推进技术200627(5): 390-393, 398.
  YUAN H C, LIANG D W. Analysis of characteristics of restart performance for a hypersonic inlet[J]. Journal of Propulsion Technology200627(5): 390-393, 398 (in Chinese).
90 YOU J, YU A Y, LE J L, et al. Experimental research on restarting characteristics of supersonic inlet based of injection regulation: AIAA-2017-2387 [R].Reston: AIAA, 2017.
91 游进, 夏智勋, 王登攀, 等. 高超声速进气道再起动特性及其影响因素数值模拟[J]. 固体火箭技术201134(2): 161-166.
  YOU J, XIA Z X, WANG D P, et al. Numerical study on influencing factors of restarting characteristics for a hypersonic inlet[J]. Journal of Solid Rocket Technology201134(2): 161-166 (in Chinese).
92 方传波, 张旭荣, 余勇, 等. 二元高超声速进气道再起动特性研究[J]. 战术导弹技术2017(5): 28-35.
  FANG C B, ZHANG X R, YU Y, et al. Study of restarting characteristics of the two-dimensional hypersonic inlet[J]. Tactical Missile Technology2017(5): 28-35 (in Chinese).
93 贾轶楠. 高超声速进气道再起动特性影响规律研究[D]. 北京: 中国科学院大学, 2018.
  JIA Y N. Study on the influence law of hypersonic inlet restart characteristics[D]. Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese).
94 GOLDBERG T, HEFNER J N. Starting phenomena for hypersonic inlets with thick turbulent boundary layers at Mach 6 [R]. Washington, D. C.: NASA, 1971.
95 XIE W Z, JIN Y, GE Y, et al. Feasibility of employing the restarting process to evaluate the self-starting ability for hypersonic inlets[J]. Aerospace Science and Technology2020107: 106347.
96 SU W Y, HU Z W, TANG P P, et al. Transient analysis for hypersonic inlet accelerative restarting process[J]. Journal of Spacecraft and Rockets201754(2): 376-385.
97 REUBUSH D, NGUYEN L, RAUSCH V. Review of X-43A return to flight activities and current status: AIAA-2003-7085 [R]. Reston: AIAA, 2003.
98 ZVEGINTSEV V, MELNIKOV A Y. Change of flow patterns in a supersonic inlet during its acceleration and deceleration[J]. AIP Conference Proceedings20202288(1): 020004.
99 常军涛, 于达仁, 鲍文. 攻角引起的高超声速进气道不起动/再起动特性分析[J]. 航空动力学报200823(5): 816-821.
  CHANG J T, YU D R, BAO W. Characteristic analysis of unstart/restart of hypersonic inlets caused by variations of attack angle of freestream[J]. Journal of Aerospace Power200823(5): 816-821 (in Chinese).
100 XU S C, WANG Y, WANG Z G, et al. Experimental investigations of hypersonic inlet unstart/restart process and hysteresis phenomenon caused by angle of attack[J]. Aerospace Science and Technology2022126: 107621.
101 MURAKAMI A, YANAGI R, SHINDO S, et al. Mach 3 wind tunnel test of mixed compression supersonic inlet:AIAA-1992-3625 [R]. Reston: AIAA, 1992.
102 REINARTZ B U, HERRMANN C D, BALLMANN J, et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power200319(5): 868-875.
103 ZHANG J S, YUAN H C, WANG Y F, et al. Experiment and numerical investigation of flow control on a supersonic inlet diffuser[J]. Aerospace Science and Technology2020106: 106182.
104 CHANG J T, WANG L, BAO W, et al. Experimental investigation of hysteresis phenomenon for scramjet engine[J]. AIAA Journal201452(2): 447-451.
105 LI N, CHANG J T, JIANG C Z, et al. Unstart/restart hysteresis characteristics analysis of an over–under TBCC inlet caused by backpressure and splitter[J]. Aerospace Science and Technology201872: 418-425.
106 JIAO X L, CHANG J T, WANG Z Q, et al. Hysteresis phenomenon of hypersonic inlet at high Mach number[J]. Acta Astronautica2016128: 657-668.
107 KANTROWITZ A, DONALDSON C. Preliminary investigation of supersonic diffusers: ACR No. L5D20[R]. Washington,D.C.: NACA, 1945.
108 TIMOFEEV E, TAHIR R, MOLDER S. On recent developments related to flow starting in hypersonic air intakes: AIAA-2008-2512 [R].Reston: AIAA, 2008.
109 LIU H K, YAN C, ZHAO Y T, et al. Active control method for restart performances of hypersonic inlets based on energy addition[J]. Aerospace Science and Technology201985: 481-494.
110 IM S K, DO H, CAPPELLI M. Plasma control of a turbulent boundary layer in an unstarting supersonic flow:AIAA-2011-1143 [R].Reston: AIAA, 2011.
111 PHAM H S, MYOKAN M, TAMBA T, et al. Effects of repetitive laser energy deposition on supersonic duct flows[J]. AIAA Journal201856(2): 542-553.
112 DELERY J M. Shock wave/turbulent boundary layer interaction and its control[J]. Progress in Aerospace Sciences198522(4): 209-280.
113 CHYU W J, RIMLINGER M J, SHIH T I P. Control of shock-wave/boundary-layer interactions by bleed[J]. AIAA Journal199533(7): 1239-1247.
114 BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011.
115 SANDERS B W, MITCHELL G A. Increasing the stable operating range of a Mach 2.5 inlet[R]. Washington, D. C.: NASA, 1970.
116 PAYNTER G, MAYER D, TJONNELAND E. Flow stability issues in supersonic inlet flow analyses: AIAA-1993-0290 [R]. Reston: AIAA, 1993.
117 CHEN H, TAN H J, LIU Y Z, et al. External-compression supersonic inlet free from violent buzz[J]. AIAA Journal201957(6): 2513-2523.
118 JIN Y, ZHANG Y, LI X, et al. Suppression of flow response hysteresis in the throttling/unthrottling process for supersonic inlet[J]. Acta Astronautica2023202: 34-47.
119 JIN Y, ZHANG Y, TAN H J, et al. Unstart/restart boundary broadening method for a two-dimensional supersonic variable inlet based on a distributed bleed system[J]. Journal of Aerospace Engineering202336(1): 04022115.
120 ALBERTSON C, EMAMI S, TREXLER C. Mach 4 test results of a dual-flowpath, turbine based combined cycle inlet: AIAA-2006-8138 [R]. Reston:AIAA, 2006.
121 王德鹏. TBCC变几何进气道的设计及仿真研究[D]. 南京: 南京航空航天大学, 2014.
  WANG D P. The design and simulation of a variable geometry TBCC inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
122 SAUNDERS J, STUEBER T, THOMAS S, et al. Testing of the NASA hypersonics project combined cycle engine large scale inlet mode transition experiment (CCE LlMX): NASA/TM-2012-217217 [R]. Washington,D.C.:NASA, 2012.
123 SLATER J, SAUNDERS J. Computational fluid dynamics (CFD) simulation of hypersonic turbine-based combined-cycle (TBCC) inlet mode transition: NASA/TM-2010-216362 [R]. Washington,D.C.:NASA, 2010.
124 XIANG X H, LIU Y, QIAN Z S. Aerodynamic design and numerical simulation of over-under turbine-based combined-cycle (TBCC) inlet mode transition[J]. Procedia Engineering201599: 129-136.
125 YU H, ZHANG Y, CHEN L, et al. Characteristics of combined-cycle inlet during mode transition in off-design state[J]. AIAA Journal202361(6): 2601-2611.
126 李龙, 李博, 梁德旺, 等. 涡轮基组合循环发动机并联式进气道的气动特性[J]. 推进技术200829(6): 667-672.
  LI L, LI B, LIANG D W, et al. Aerodynamic characteristics of over/under inlet for turbine based combined cycle engine[J]. Journal of Propulsion Technology200829(6): 667-672 (in Chinese).
127 赵亮. 内并联式TBCC进气道气动设计与分析[D]. 南京: 南京航空航天大学, 2010.
  ZHAO L. Aerodynamic design and analysis of internal parallel TBCC inlet[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese).
128 刘君, 袁化成, 郭荣伟. 内并联式TBCC进气道模态转换过程流动特性分析[J]. 宇航学报201637(4): 461-469.
  LIU J, YUAN H C, GUO R W. Analysis of over/under TBCC inlet mode transition flow characteristic[J]. Journal of Astronautics201637(4): 461-469 (in Chinese).
129 LIU J, YUAN H C, GUO R W. Unsteady flow characteristic analysis of turbine based combined cycle (TBCC) inlet mode transition[J]. Propulsion and Power Research20154(3): 141-149.
文章导航

/