非合作目标软捕获后的动力学参数无激励辨识
收稿日期: 2022-12-01
修回日期: 2023-02-20
录用日期: 2023-05-22
网络出版日期: 2023-05-26
基金资助
国家自然科学基金(51875046)
Dynamic parameter identification without excitation for non-cooperative targets post soft capture
Received date: 2022-12-01
Revised date: 2023-02-20
Accepted date: 2023-05-22
Online published: 2023-05-26
Supported by
National Natural Science Foundation of China(51875046)
针对非合作目标动力学参数的在轨辨识问题,提出一种基于软对接机构状态感知的无激励辨识方法。当非合作目标被捕获后,复合体进入冲量缓冲和卸载阶段,软对接机构则处于无激励运动响应状态。首先,分析搭载软对接机构的主航天器运动学,建立包含非合作目标动力学参数的复合体动量方程,进而完成复合体绝对动量增量方程的构建。其次,针对求解动力学参数时存在的奇异问题,设计一种矩阵连续增维的方法实现避奇异求解,并通过矩阵条件数求解完成终止条件度量。最后,仅需在轨感知搭载软对接机构主航天器的广义坐标和广义速度,即可实现非合作目标动力学参数的辨识。数值仿真实验表明,提出的非合作目标动力学参数在轨无激励辨识方法具有求解速度快、辨识周期短、对基座姿态影响小和辨识精度高的优点。
徐升 , 褚明 , 蔺绍奇 , 常睿 , 孙汉旭 . 非合作目标软捕获后的动力学参数无激励辨识[J]. 航空学报, 2023 , 44(19) : 228342 -228342 . DOI: 10.7527/S1000-6893.2022.28342
To address the problem of dynamic parameter identification on orbit for non-cooperative targets, a non-excitation identification method based on the state perception of soft-docking mechanism is proposed. When non-cooperative targets are captured, the compound system is in the phase of buffering and unloading collision impulse, and the soft-docking mechanism is in the state of non-excitation response. Firstly, the kinematics of the main spacecraft equipped with the soft-docking mechanism is analyzed, the momentum equation of the compound system with the dynamics parameters of the non-cooperative targets is established, and then an absolute momentum increment equation of the compound system is constructed. Secondly, aiming at the singularity problem in solving dynamic parameters, a method of continuous dimension increasing of matrix is designed to avoid singularity, and the measurement of the termination condition is completed through solving matrix condition number. Finally, based on the generalized coordinates and generalized velocities of the main spacecraft equipped with soft-docking mechanism through on-orbit perception, the dynamic parameters of the non-cooperative targets can be identified. Numerical simulation results show that the proposed method has the advantages of faster solution, short identification period, small impact on base attitude and high identification accuracy.
1 | 陈小前, 袁建平, 姚雯. 航天器在轨服务技术[M]. 北京: 中国宇航出版社, 2009. |
CHEN X Q, YUAN J P, YAO W. Spacecraft on-orbit service technology[M]. Beijing: China Astronautic Publishing House, 2009 (in Chinese). | |
2 | 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4): 805-811. |
CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4): 805-811 (in Chinese). | |
3 | 梁斌, 徐文福.空间机器人:建模、规划与控制[M]. 北京: 清华大学出版社, 2017. |
LIANG B, XU W F. Space robotics: Modeling, planning and control[M]. Beijing: Tsinghua University Press,2017 (in Chinese). | |
4 | 初未萌, 杨今朝, 邬树楠, 等. 基于LSTM的空间机器人系统惯性张量在轨辨识[J]. 航空学报, 2021, 42(11): 524615. |
CHU W M, YANG J Z, WU S N, et al. LSTM-based on-orbit identification of inertia tensor for space robot system[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524615 (in Chinese). | |
5 | FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68: 1-26. |
6 | 胡启阳, 王大轶. 采用双目视觉的非合作空间目标相对导航与惯性参数辨识方法[J]. 宇航学报, 2020, 41(11): 1410-1417. |
HU Q Y, WANG D Y. Relative navigation and identification of inertia parameters of non-cooperative space target based on stereo vision[J]. Journal of Astronautics, 2020, 41(11): 1410-1417 (in Chinese). | |
7 | AGHILI F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3): 634-649. |
8 | HOU X H, MA C A, WANG Z, et al. Adaptive pose and inertial parameters estimation of free-floating tumbling space objects using dual vector quaternions[J]. Advances in Mechanical Engineering, 2017, 9(10). doi:10.1177/1687814017714210 . |
9 | 侯振东, 王兆魁, 张育林. 基于推力器的组合航天器质量特性辨识方法研究[J]. 航天控制, 2015, 33(1): 54-60. |
HOU Z D, WANG Z K, ZHANG Y L. Research on identification of mass characteristics for spacecraft combination based on thrusters[J]. Aerospace Control, 2015, 33(1): 54-60 (in Chinese). | |
10 | XU W F, HU Z H, ZHANG Y, et al. On-orbit identifying the inertia parameters of space robotic systems using simple equivalent dynamics[J]. Acta Astronautica, 2017, 132: 131-142. |
11 | MA O, DANG H, PHAM K. On-orbit identification of inertia properties of spacecraft using a robotic arm[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1761-1771. |
12 | NGUYEN-HUYNH T C, SHARF I. Adaptive reactionless motion and parameter identification in postcapture of space debris[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 404-414. |
13 | 王明, 黄攀峰, 常海涛, 等. 基于机械臂运动的组合航天器惯性参数在轨辨识[J]. 西北工业大学学报, 2014, 32(5): 811-816. |
WANG M, HUANG P F, CHANG H T, et al. On-orbit identification of inertia parameters of compound spacecraft using space manipulator[J]. Journal of Northwestern Polytechnical University, 2014, 32(5): 811-816 (in Chinese). | |
14 | 张博, 梁斌, 王学谦, 等. 基于自适应反作用零空间控制的大型非合作目标动力学参数实时辨识仿真[J]. 机器人, 2016, 38(1): 98-106. |
ZHANG B, LIANG B, WANG X Q, et al. Simulation of real-time dynamic parameter identification for large non-cooperative targets using adaptive reaction null space control[J]. Robot, 2016, 38(1): 98-106 (in Chinese). | |
15 | MENG Q L, LIANG J X, MA O. Identification of all the inertial parameters of a non-cooperative object in orbit[J]. Aerospace Science and Technology, 2019, 91: 571-582. |
16 | CHU Z Y, MA Y, HOU Y Y, et al. Inertial parameter identification using contact force information for an unknown object captured by a space manipulator[J]. Acta Astronautica, 2017, 131: 69-82. |
17 | 马卫华, 袁大钟, 孟思洋, 等. 黏附激励下空间目标惯性参数的辨识方法[J]. 宇航学报, 2019, 40(10): 1197-1204. |
MA W H, YUAN D Z, MENG S Y, et al. Spacecraft inertial parameters identification method based on adhesion excitation[J]. Journal of Astronautics, 2019, 40(10): 1197-1204 (in Chinese). | |
18 | WEI C, ZHANG Y, WANG H L, et al. Inertia parameter identification of space floating target during robotic exploratory grasping[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(11): 4247-4260. |
19 | CHANG H T, HUANG P F, LU Z Y, et al. Inertia parameters identification for cellular space robot through interaction[J]. Aerospace Science and Technology, 2017, 71: 464-474. |
20 | 何骁, 谭述君, 吴志刚. 大角度机动下带挠性附件航天器转动惯量在轨辨识[J]. 宇航学报, 2017, 38(9): 927-935. |
HE X, TAN S J, WU Z G. On-orbit identification of the moment of inertia for a spacecraft with flexible appendages during a large-angle maneuver[J]. Journal of Astronautics, 2017, 38(9): 927-935 (in Chinese). | |
21 | 徐升, 褚明, 孙汉旭. 一种空间软对接仿生手腕设计与仿真[J]. 机械工程学报, 2022, 58(13): 59-70. |
XU S, CHU M, SUN H X. Design and simulation of spatially soft-docking bionic wrist[J]. Journal of Mechanical Engineering, 2022, 58(13): 59-70 (in Chinese). |
/
〈 |
|
〉 |