面向海上目标打击的无人编组弹性运动规划
收稿日期: 2023-08-17
修回日期: 2023-08-28
录用日期: 2023-09-13
网络出版日期: 2023-09-27
基金资助
装备预研教育部联合基金(8091B022235);上海交通大学深蓝计划(SL2022MS010);国防科技重点实验室基金(2022JCJQLB03308)
Unmanned group resilient motion planning for attacking sea surface targets
Received date: 2023-08-17
Revised date: 2023-08-28
Accepted date: 2023-09-13
Online published: 2023-09-27
Supported by
Joint Fund of Equipment Pre-Research and Ministry of Education(8091B022235);Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2022MS010);Key Laboratory Fund of National Defense Science and Technology(2022JCJQLB03308)
针对空海无人编组对海上目标的高效能打击任务需求,提出了一种能够应对敌方攻击的弹性运动规划方法。结合作战单元欠驱动运动学模型,根据敌我相对运动状态设计了控制障碍函数,并在考虑敌方最大程度破坏安全边界的前提下构建了安全集前向不变性约束,从而通过配置作战单元的线速度和角速度生成威胁规避动作。为解决己方无人机遭遇多架敌机拦截时由多约束冲突导致的算法可行性问题,在约束中引入与敌机威胁大小相关的松弛变量系数并设计(UAV)了备用控制器。在此基础上,提出无人艇对空火力支援算法,以协助己方无人机突防。仿真结果表明,该方法能够使己方编组在敌方无人机速度占优且采用最优追击策略的情况下,获得较高的水面目标打击成功率。
李博宸 , 牛双诚 , 丁璐 , 王成罡 , 宋磊 , 晋玉强 . 面向海上目标打击的无人编组弹性运动规划[J]. 航空学报, 2024 , 45(12) : 329455 -329455 . DOI: 10.7527/S1000-6893.2023.29455
To achieve high efficacy of a strike mission on targets at sea using air-sea unmanned groups, a resilient motion planning method which can handle adversarial attacks is proposed. Based on the underactuated kinematics model of combat units, a control barrier function with relative motion states is proposed. The forward invariance of the safety set is established considering the maximal violation of safety bounds by the enemy. As a result, the motion planning algorithm can generate threat evasion maneuvers by configuring the linear and angular velocities of combat units. To solve the feasibility problem caused by multi-constraints’ confliction when multiple hostile Unmanned Aerial Vehicles (UAV) are launched by the enemy, the relaxation variable is introduced into the constraints based on the evaluated enemies’ threats. On this basis, an anti-air support algorithm of Unmanned Surface Vehicles (USV) is proposed for penetration mission of UAV groups. The simulation results show that the proposed algorithm can achieve a high success rate of striking the sea surface target while the defending UAVs adopt the optimal pursuit strategy with speed advantages.
1 | 向锦武, 董希旺, 丁文锐, 等. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报, 2022, 43(10): 527570. |
XIANG J W, DONG X W, DING W R, et al. Key technologies for autonomous cooperation of unmanned swarm systems in complex environments[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527570 (in Chinese). | |
2 | BLOCH A M. Nonholonomic mechanics and control [M]. New York: Springer New York, 2015. |
3 | 唐华斌, 王磊, 孙增圻. 基于随机采样的运动规划综述[J]. 控制与决策, 2005, 20(7): 721-726. |
TANG H B, WANG L, SUN Z Q. A survey on randomized sampling-based motion planning[J]. Control and Decision, 2005, 20(7): 721-726 (in Chinese). | |
4 | 陈家照, 张中位, 徐福后. 改进的概率路径图法[J]. 计算机工程与应用, 2009, 45(10): 54-55. |
CHEN J Z, ZHANG Z W, XU F H. Modified prosbilistic roadmap method[J]. Computer Engineering and Applications, 2009, 45(10): 54-55 (in Chinese). | |
5 | LIU Y C, BUCKNALL R, ZHANG X Y. The fast marching method based intelligent navigation of an unmanned surface vehicle[J]. Ocean Engineering, 2017, 142: 363-376. |
6 | COWLAGI R V, TSIOTRAS P. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics, 2012, 42(5): 1455-1469. |
7 | ISAACS R. Differential games[M]. Hoboken: John Wiley & Sons, Inc., 1965. |
8 | MITCHELL I M, BAYEN A M, TOMLIN C J. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games[J]. IEEE Transactions on Automatic Control, 2005, 50(7): 947-957. |
9 | 王雨琪, 宁国栋, 王晓峰, 等. 基于微分对策的临近空间飞行器机动突防策略[J]. 航空学报, 2020, 41(S2): 724276. |
WANG Y Q, NING G D, WANG X F, et al. Maneuvering penetration strategy of near space vehicle based on differential game[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724276 (in Chinese). | |
10 | 王鑫, 闫杰, 孟廷伟. 高速目标分阶段博弈拦截制导策略[J]. 航空学报, 2022, 43(9): 325598. |
WANG X, YAN J, MENG T W. High-speed target multi-stage interception scheme based on game theory[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325598 (in Chinese). | |
11 | GARCIA E, CASBEER D W, VON MOLL A, et al. Multiple pursuer multiple evader differential games[J]. IEEE Transactions on Automatic Control, 2021, 66(5): 2345-2350. |
12 | GARCIA E. Cooperative target protection from a superior attacker[J]. Automatica, 2021, 131: 109696. |
13 | LIANG L, DENG F, PENG Z H, et al. A differential game for cooperative target defense[J]. Automatica, 2019, 102: 58-71. |
14 | LIANG L, DENG F, LU M B, et al. Analysis of role switch for cooperative target defense differential game[J]. IEEE Transactions on Automatic Control, 2021, 66(2): 902-909. |
15 | 陈灿, 莫雳, 郑多, 等. 非对称机动能力多无人机智能协同攻防对抗[J]. 航空学报, 2020, 41(12): 324152. |
CHEN C, MO L, ZHENG D, et al. Cooperative attack-defense game of multiple UAVs with asymmetric maneuverability[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324152 (in Chinese). | |
16 | AMES A D, COOGAN S, EGERSTEDT M, et al. Control barrier functions: Theory and applications[C]∥ 2019 18th European Control Conference. Piscataway: IEEE Press, 2019: 3420-3431. |
17 | YANG G, VANG B, SERLIN Z, et al. Sampling-based motion planning via control barrier functions[C]∥ Proceedings of the 2019 3rd International Conference on Automation, Control and Robots. New York: ACM, 2019: 22-29. |
18 | NOTOMISTA G, MAYYA S, HUTCHINSON S, et al. An optimal task allocation strategy for heterogeneous multi-robot systems[C]∥ 2019 18th European Control Conference. Piscataway: IEEE Press, 2019: 2071-2076. |
19 | WANG C G, ZHU S Y, LI B C, et al. Time-varying constraint-driven optimal task execution for multiple autonomous underwater vehicles[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 712-719. |
20 | WANG C G, YU W B, ZHU S Y, et al. Safety-critical trajectory generation and tracking control of autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2023, 48(1): 93-111. |
21 | SQUIRES E, PIERPAOLI P, KONDA R, et al. Composition of safety constraints for fixed-wing collision avoidance amidst limited communications[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(4): 714-725. |
22 | SQUIRES E, KONDA R, PIERPAOLI P, et al. Safety with limited range sensing constraints for fixed wing aircraft[C]∥ 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2021: 9065-9071. |
23 | BLACK M, GARG K, PANAGOU D. A quadratic program based control synthesis under spatiotemporal constraints and non-vanishing disturbances[C]∥ 2020 59th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2020: 2726-2731. |
24 | BLANCHINI F. Set invariance in control[J]. Automatica, 1999, 35(11): 1747-1767. |
25 | OYLER D W, KABAMBA P T, GIRARD A R. Pursuit?evasion games in the presence of obstacles[J]. Automatica, 2016, 65: 1-11. |
26 | LI S, WANG C, XIE G M. Pursuit-evasion differential games of players with different speeds in spaces of different dimensions[C]∥ 2022 American Control Conference. Piscataway: IEEE Press, 2022: 1299-1304. |
/
〈 |
|
〉 |