镂空图案化电加热组件防冰性能试验研究
收稿日期: 2023-07-17
修回日期: 2023-07-18
录用日期: 2023-08-07
网络出版日期: 2023-08-24
Anti-icing performance test investigation on hollowed patterning electric heating module
Received date: 2023-07-17
Revised date: 2023-07-18
Accepted date: 2023-08-07
Online published: 2023-08-24
杨秋明 , 朱永峰 , 陈华伟 , 刘晓林 . 镂空图案化电加热组件防冰性能试验研究[J]. 航空学报, 2023 , 44(S2) : 729334 -729334 . DOI: 10.7527/S1000-6893.2023.29334
To satisfy the requirements of composite material structures with both radio frequency signal transmission performance and anti-icing performance, a method is put forward to use the hollowed patterning electric heating module as the core part of the electric heating anti-icing system. Two typical hollowed patterning electric heating modules are tested to evaluate the anti-icing performance in the icing wind tunnel. The results show that the shape of the hollowed patterning and the hollowed ratio are the main factors affecting the size of the residual ice, the surface temperature distribution and the potential for runback ice formation. Under certain test conditions, regular residual ice particles are produced in the protection areas, with the regularity of periodic shedding.
1 | KIND R J, POTAPCZUK M G, FEO A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5-6): 257-345. |
2 | 裘燮纲,韩凤华.飞机防冰系统 [M]. 一版. 北京:航空专业教材编审组,1985. |
QIU X G, HAN F H. Aircraft anti-icing system[M]. 1st ed. Beijing: Aviation Specialty Textbook Press,1985 (in Chinese). | |
3 | 朱永峰, 张明, 周景锋, 等. 民用飞机防除冰系统[M]. 北京: 航空工业出版社, 2021: 17-20. |
ZHU Y F, ZHANG M, ZHOU J F, et al. Civil aircraft anti-icing and de-icing system[M]. Beijing: Aviation Industry Press, 2021: 17-20 (in Chinese). | |
4 | 刘代军, 陈亚莉. 用于波音787的新型复合材料机翼除冰系统[J]. 航空制造技术, 2009, 52(17): 82-83. |
LIU D J, CHEN Y L. Application of new type of composite wing deicing system in Boeing 787[J]. Aeronautical Manufacturing Technology, 2009, 52(17): 82-83 (in Chinese). | |
5 | 胡林权. 民用飞机机翼电加热防/除冰应用现状及技术难点[J]. 航空科学技术, 2016, 27(7): 8-11. |
HU L Q. Application status and technical difficulties for civil aircraft wing electrothermal anti-/de-icing[J]. Aeronautical Science & Technology, 2016, 27(7): 8-11 (in Chinese). | |
6 | 肖春华, 桂业伟, 林贵平. 飞机电热除冰的研究进展与展望[J]. 科技导报, 2011, 29(18): 69-73. |
XIAO C H, GUI Y W, LIN G P. A review of studies of aircraft electrothermal de-icing[J]. Science & Technology Review, 2011, 29(18): 69-73 (in Chinese). | |
7 | 马莉娅, 熊联友, 刘立强, 等. 用于碳纤维复合材料的电热除冰技术实验研究[J]. 航空学报, 2012, 33(1): 54-61. |
MA L Y, XIONG L Y, LIU L Q, et al. Experimental study on electro-thermal deicing technique for carbon fiber composite[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 54-61 (in Chinese). | |
8 | 魏杰, 李昊, 张亚男, 等. 石墨烯复合材料在电热防/除冰领域研究进展[J]. 中国材料进展, 2022, 41(6): 487-496. |
WEI J, LI H, ZHANG Y N, et al. Research progress of graphene composites in the field of electrothermal anti-icing/deicing[J]. Materials China, 2022, 41(6): 487-496 (in Chinese). | |
9 | 唐超, 谢文俊, 袁培毓, 等. 翼面前缘共形电热除冰功能结构开发与验证[J]. 航空学报, 2023, 44(12): 331-341. |
TANG C, XIE W J, YUAN P Y, et al. Development and verification of a conformal electrothermal deicing functional structure for leading edge of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 331-341 (in Chinese). | |
10 | JANAS D, KOZIOL K K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications[J]. Nanoscale, 2014, 6(6): 3037-3045. |
11 | 徐记伟, 张政, 黄勇, 等. 周期性结构材料在隐身中的应用[J]. 飞航导弹, 2009(4): 57-61. |
XU J W, ZHANG Z, HUANG Y, et al. Application of periodic structural materials in stealth[J]. Winged Missiles Journal, 2009(4): 57-61 (in Chinese). | |
12 | 李小秋, 高劲松, 赵晶丽, 等. 一种适用于雷达罩的频率选择表面新单元研究[J]. 物理学报, 2008, 57(6): 3803-3806. |
LI X Q, GAO J S, ZHAO J L, et al. A novel element of frequency selective surface for radome[J]. Acta Physica Sinica, 2008, 57(6): 3803-3806 (in Chinese). | |
13 | BIGELOW W S, FARR E, FARR, et al. A frequency selective surface used as a broadband filter to pass low-frequency UWB while reflecting X–band radar[R]. 2006 |
14 | SAE. Calibration and acceptance of icing wind tunnels[R]. 2003. |
15 | 黄梦薇, 周峰, 詹禄禄. 红外热像仪在发动机静止构件表面温度测量中的应用[J]. 现代信息科技, 2019, 3(11): 32-33, 36. |
HUANG M W, ZHOU F, ZHAN L L. The application of infrared camera in surface temperature measurement for aero engine’s static component[J]. Modern Information Technology, 2019, 3(11): 32-33, 36 (in Chinese). | |
16 | 郑莉, 徐志强, 张剑. 基于金属喷涂的复合材料电热组件防除冰试验[J]. 气动研究与实验, 2022, 34(03): 117-122. |
ZHENG L, XU Z Q, ZHANG J. Anti-icing and de-icing test of composite electrothermal components based on metal spraying[J]. Aerodynamic Research and Experiment, 2022, 34(03): 117-122 (in Chinese). | |
17 | 肖春华, 桂业伟, 杜雁霞, 等. 电热除冰传热特性的结冰风洞实验研究[J]. 实验流体力学, 2010, 24(4): 21-24. |
XIAO C H, GUI Y W, DU Y X, et al. Experimental study on heat transfer characteristics of aircraft electrothermal deicing in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 21-24 (in Chinese). | |
18 | 朱东宇, 裴如男, 杨秋明, 等. FL-61结冰风洞热气防冰系统试验方法研究[J]. 气动研究与试验, 2023, 1(5): 107-112. |
ZHU D Y, PEI R N, YANG Q M, et al. Experimental research on a hot air anti-icing system in FL-61 icing wind tunnel[J]. Aerodynamic Research & Experiment, 2023, 1(5): 107-112 (in Chinese). | |
19 | CCAR. 运输类飞机适航标准: CCAR-25-R5 [S]. 2016. |
CCAR. Airworthiness standards for transport aircraft: CCAR-25-R5 [S]. 2016. |
/
〈 |
|
〉 |