总温畸变下跨声压气机失速过程非定常模拟
收稿日期: 2022-11-28
修回日期: 2022-12-20
录用日期: 2023-02-06
网络出版日期: 2023-02-13
基金资助
国家自然科学基金(51922098);国家重大科技专项(2017-II-0004-0017)
Unsteady simulation of stall process in transonic compressor with total temperature distortion
Received date: 2022-11-28
Revised date: 2022-12-20
Accepted date: 2023-02-06
Online published: 2023-02-13
Supported by
National Natural Science Foundation of China(51922098);National Science and Technology Major Project(2017-II-0004-0017)
为研究进气总温畸变条件下跨声压气机失速机理,对德国Darmstadt跨声单级压气机开展进口周向范围180°、高温区500 K总温畸变条件下全环非定常数值模拟研究。结果表明进气总温畸变条件下压气机流量显著减小,总压比大幅下降。压气机转子出口面不同周向位置的总压径向分布不同。对于顺转子叶片旋转方向,在高温区总压逐渐减小,低总温区域的转子出口总压高于高总温区域。随压气机逐渐接近失速点,总压径向分布不均匀性增大。当流量进一步减小后,总温畸变下诱发旋转失速的先兆波为突尖型,最先出现失速先兆的周向位置是转子叶片离开低温区、转入高温畸变区时。失速先兆的周向传播速度约为88.9%转子转速,失速初期失速团的周向传播速度约为66.0%转子转速。整个失速过程伴随转子出口流量的大幅度波动,由失速团沿周向的运动和合并引起。
赵红亮 , 张文强 , 邱佳慧 , 张敏 , 杜娟 , 聂超群 . 总温畸变下跨声压气机失速过程非定常模拟[J]. 航空学报, 2023 , 44(14) : 628319 -628319 . DOI: 10.7527/S1000-6893.2022.28319
To investigate the stall mechanism of a transonic compressor with inlet total temperature distortion, full annular unsteady numerical simulations with a 500 K, 180° circumferential total temperature distortion are conducted on the German Darmstadt transonic compressor. The results indicate that the mass flow rate and the total pressure ratio decrease dramatically under the inlet total temperature distortion. The total pressure radial distribution varies at different circumferential positions on the compressor rotor exit. Along the rotor rotating direction, the total pressure gradually decreases in the high temperature region, and gradually increases in the low temperature region. The closer to the stall point, the greater non-uniform of the total pressure radial distribution. As the mass flow is further reduced, the type of the inception induced stall is spike, appearing first when the rotor blades turn into the high total temperature region. The circumferential propagation speed of the stall inception and that of the stall cells at the beginning of the stall are about 88.9% and 66.0% of the rotor speed, respectively. The entire stall process is accompanied by a significant fluctuation of the mass flow, caused by the movement and merging of the stall cells along the circumferential direction.
1 | LUCY B W, REED J. A survey of turbine engine temperature distortion generator requirements and concept trade study[C]∥ 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011. |
2 | TAFTI D K, VANKA S P. Hot gas environment around STOVL aircraft in ground proximity. Ⅱ—Numerical study[J]. Journal of Aircraft, 1992, 29(1): 20-27. |
3 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 29-65. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 29-65 (in Chinese). | |
4 | RUDEY R A, ANTL R J. The effect of inlet temperature distortion on the performance of a turbo-fan engine compressor system[C]∥ 6th Propulsion Joint Specialist Conference. Reston: AIAA, 1970. |
5 | 叶培梁, 刘大响. 进口温度畸变对涡扇发动机稳定性影响的试验研究[J]. 燃气涡轮试验与研究, 2001, 14(1): 38-45. |
YE P L, LIU D X. An experimental investigation in effects of inlet temperature distortion on turbofan stability[J]. Gas Turbine Experiment and Research, 2001, 14(1): 38-45 (in Chinese). | |
6 | HYNES T P, GREITZER E M. A method for assessing effects of circumferential flow distortion on compressor stability[J]. Journal of Turbomachinery, 1987, 109(3): 371-379. |
7 | STENNING A H. Inlet distortion effects in axial compressors[J]. Journal of Fluids Engineering, 1980, 102(1): 7-13. |
8 | MARBLE F E. Three-dimensional flow in turbomachines, aerodynamics of turbines and compressors[M]. Princeton: Princeton University Press, 1964. |
9 | ADAMCZYK J J. Model equation for simulating flows in multistage turbomachinery: NASA-TM-86869[R]. Washington, D. C. : NASA, 1984. |
10 | HALE A, DAVIS M, KNEILE K. Turbine engine analysis compressor code: TEACC. I—Technical approach and steady results[C]∥ 32nd Aerospace Sciences Meeting. Reston: AIAA, 1994 |
11 | HALE A, CHALK J, KLEPPER J, et al. Turbine engine analysis compressor code—TEACC. I—Multi-stage compressors and inlet distortion[C]∥ 17th Applied Aerodynamics Conference. Reston: AIAA, 1999. |
12 | HALE A, DAVIS M, SIRBAUGH J. A numerical simulation capability for analysis of aircraft inlet-engine compatibility[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 473-481. |
13 | GUO J, HU J, TU B F, et al. A mixed-fidelity computational model of aero engine for inlet distortion[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aero-space Engineering, 2019, 233(14): 5295-5309. |
14 | LI Q S, LYU Y Z, PAN T Y, et al. Development of a coupled supersonic inlet-fan Navier-Stokes simulation method[J]. Chinese Journal of Aeronautics, 2018, 31(2): 237-246. |
15 | 叶巍, 唐世建, 白磊. 进气温度畸变对某发动机稳定性影响的研究[J]. 燃气涡轮试验与研究, 2006, 19(4): 6-10, 15. |
YE W, TANG S J, BAI L. Study on the effects of inlet temperature distortion on stability of an engine[J]. Gas Turbine Experiment and Research, 2006, 19(4): 6-10, 15 (in Chinese). | |
16 | 叶巍, 乔渭阳, 侯敏杰. 发动机在进气温度畸变条件下的特性研究[J]. 推进技术, 2008, 29(6): 677-680. |
YE W, QIAO W Y, HOU M J. Study for the effects of inlet temperature distortion on engine performance[J]. Journal of Propulsion Technology, 2008, 29(6): 677-680 (in Chinese). | |
17 | 黄顺洲, 胡骏. 进气畸变对发动机稳定性影响的分析模型[J]. 推进技术, 2006, 27(5): 426-430. |
HUANG S Z, HU J. Model of the effect of inlet flow distortions on engine stability[J]. Journal of Propulsion Technology, 2006, 27(5): 426-430 (in Chinese). | |
18 | 张百灵, 李军, 江勇, 等. 进气总温畸变在压气机中的数值模拟[J]. 推进技术, 2009, 30(2): 182-186. |
ZHANG B L, LI J, JIANG Y, et al. Numerical simulation of the inlet total temperature distortion in the compressor[J]. Journal of Propulsion Technology, 2009, 30(2): 182-186 (in Chinese). | |
19 | WESTON D B, GORRELL S E, MARSHALL M L, et al. Analysis of turbofan performance under total pressure distortion at various operating points[C]∥ Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Montreal: ASME, 2015. |
20 | 李志平, 陈家辉, 朱星宇, 等. 压力-温度组合畸变下航空发动机失速/喘振适航审定[J/OL]. 航空动力学报, (2022-08-02) [2023-05-05]. . |
LI ZH P, CHEN J H, ZHU X Y, et al. Aero-engine stall/surge airworthiness certification study under combined pressure-temperature distortion[J/OL]. Journal of Aerospace Power, (2022-08-02) [2023-05-05]. (in Chinese). | |
21 | 尤延铖, 滕健, 郑晓刚, 等. 航空发动机进气温度畸变研究综述[J]. 南京航空航天大学学报, 2017, 49(3): 283-300. |
YOU Y CH, TENG J, ZHENG X G, et al. Review of aero-engine temperature distortion research[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(3): 283-300 (in Chinese). | |
22 | 航空发动机设计手册总编委会. 航空发动机设计手册: 第7册—进排气装置[M]. 北京: 航空工业出版社, 2000. |
General Editorial Board of Aeroengine Design Manual. Aeroengine design manual: Volume 7—Intake and exhaust arrangements[M]. Beijing: Aviation Industry Publishing Company, 2000 (in Chinese). | |
23 | BAKHTIARI F, WARTZEK F, LEICHTFU? S, et al. Design and optimization of a new stator for the transonic compressor rig at TU Darmstadt: 270225[R]. Deutschland: DLR Aeronautics, 2015. |
24 | MU?LLER M W, SCHIFFER H, VOGES M, et al. Investigation of passage flow features in a transonic compressor rotor with casing treatments[C]∥ Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Vancouver: ASME, 2011. |
25 | BERGNER J, KINZEL M, SCHIFFER H, et al. Short length-scale rotating stall inception in a transonic axial compressor: experimental investigation[C]∥ Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Barcelona: ASME, 2006. |
26 | BIELA C, MU?LLER M W, SCHIFFER H P, et al. Unsteady pressure measurement in a single stage axial transonic compressor near the stability limit[C]∥ Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin: ASME, 2008. |
27 | KLAUSMANN F, FRANKE D, FORET J, et al. Transonic compressor Darmstadt—Open test case Introduction of the TUDa open test case[J]. Journal of the Global Power and Propulsion Society, 2022, 6: 318-329. |
28 | WILCOX D C. Multiscale model for turbulent flows[J]. AIAA Journal, 1988, 26(11): 1311-1320. |
29 | VAHDATI M, SAYMA A I, FREEMAN C, et al. On the use of atmospheric boundary conditions for axial-flow compressor stall simulations[J]. Journal of Turbomachinery, 2005, 127(2): 349-351. |
30 | ZHANG W Q, VAHDATI M, ZHAO F ZH. Impact of exit duct dynamic response on compressor stability[J]. Journal of Turbomachinery, 2020, 142(11): 111006. |
31 | ZHANG W Q, VAHDATI M. Stall and recovery process of a transonic fan with and without inlet distortion[J]. Journal of Turbomachinery, 2020, 142(1): 011003. |
32 | KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics, 1987, 177: 133-166. |
33 | HE X, ZHU M M, XIA K L, et al. Validation and verification of RANS solvers for TUDa-GLR-OpenStage transonic axial compressor[J]. Journal of the Global Power and Propulsion Society, 2023, 7: 13-29. |
34 | SESHADRI P, PARKS G T, SHAHPAR S. Leakage uncertainties in compressors: the case of rotor 37[J]. Journal of Propulsion and Power, 2015, 31(1): 456-466. |
35 | M?LLER D, SCHIFFER H P. On the mechanism of spike stall inception and near stall nonsynchronous vibration in an axial compressor[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(2): 021007. |
36 | HICKMAN A R, MORRIS S C. Characteristics of stable rotating stall cells in an axial compressor[C]∥ Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Charlotte: ASME, 2017. |
37 | VO H D, TAN C S, GREITZER E M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery, 2008, 130(1): 11023-11029. |
/
〈 |
|
〉 |