自适应康达喷气控制在高负荷压气机中的试验研究
收稿日期: 2023-04-18
修回日期: 2023-05-12
录用日期: 2023-06-07
网络出版日期: 2023-06-16
基金资助
国家科技重大专项(2017-II-0004-0017);中国科学院战略性先导科技专项(XDA29050000)
Experimental investigation into adaptive Coanda jet control in highly loaded compressor
Received date: 2023-04-18
Revised date: 2023-05-12
Accepted date: 2023-06-07
Online published: 2023-06-16
Supported by
National Science and Technology Major Project(2017-II-0004-0017);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA29050000)
未来航空发动机的发展要求其压缩系统级负荷不断增大,由此将使得压气机内部出现较强的角区分离、附面层流动分离等二次流。提出了一种新型的自适应康达喷气流动控制(ACJC)方法,更加智能且高效地抑制压气机内部流动分离并提升压气机的扩压能力,进而拓宽高负荷压气机稳定、高效运行范围。为构建自适应康达喷气流动控制系统并在高负荷压气机上验证其控制效果,首先,选取了扩压因子为0.66的压气机静叶叶栅为研究对象,并优化设计了单缝康达喷气静叶叶栅;然后,基于数值计算结果采用方差分析法、主成分分析法和神经网络算法建立了单缝康达喷气静叶叶栅来流攻角预测模型和最佳喷气量预测模型;最后,搭建了基于自适应康达喷气流动控制系统的试验平台,验证了其对高负荷叶栅流动分离控制的有效性和准确性。试验结果表明:在不同攻角和不同来流马赫数条件下,自适应康达喷气流动控制系统能够实时准确地预测来流攻角,并瞬间做出喷气量实时调节与反馈。此外,在5°来流攻角下,当来流马赫数为0.4、0.5和0.6时,相比于无康达喷气叶栅,康达喷气的引入使得总压损失系数分别降低了11.5%、9.8%和8.0%。
张健 , 张敏 , 杜娟 , 黄伟亮 , 聂超群 . 自适应康达喷气控制在高负荷压气机中的试验研究[J]. 航空学报, 2023 , 44(22) : 128883 -128883 . DOI: 10.7527/S1000-6893.2023.28883
Future development of aeroengines requires continuous increase in the compressor stage load, which will result in strong secondary flows such as corner separation and boundary layer flow separation in the compressor. In this paper, a new Adaptive Coanda Jet Control (ACJC) technology is proposed to intelligently and efficiently restrain the flow separation in the compressor and improve the diffusion capacity of the compressor, and the stable and efficient operation range of the highly loaded compressor is dramatically broadened. To construct the ACJC system and verify its control effect in a highly loaded compressor, we first employ a highly loaded compressor stator cascade constructed based on the Zierke & Deutsch airfoil to investigate the ACJC system, with the diffusion factor of 0.66 at the design point. Then, the variance analysis method, principal component analysis method and neural network algorithm are adopted to establish the incidence angle prediction model and the optimal injection mass flow rate prediction model of the Coanda jet flap. Finally, an experimental platform based on the ACJC system is built to verify the effectiveness and accuracy of flow separation control for the highly loaded cascade. The experimental results indicate that the ACJC system can accurately predict the incidence angle and adjust the Coanda jet mass flow rate in real time at different incidence angles and different incoming Mach numbers. In addition, compared to the cascade without the ACJC system at the incidence angel of 5°, the total pressure loss coefficient is reduced by 11.5%, 9.8% and 8.0% for incoming Mach numbers of 0.4, 0.5 and 0.6, respectively.
1 | ZHENG X Q, LI Z H. Blade-end treatment to improve the performance of axial compressors: An overview[J]. Progress in Aerospace Sciences, 2017, 88: 1-14. |
2 | LU H W, YANG Y, GUO S, et al. Control of corner separation via dimpled surface for a highly loaded compressor cascade under different inlet Mach number[J]. Aerospace Science and Technology, 2019, 85: 48-60. |
3 | 张健, 杜娟, 陈泽, 等. 高负荷压气机叶栅流动分离的主动控制方法综述[J]. 工程热物理学报, 2022, 43(5): 1190-1202. |
ZHANG J, DU J, CHEN Z, et al. Active flow control concepts of secondary flow on a highly loaded compressor cascade[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1190-1202 (in Chinese). | |
4 | DU J, LI Y W, LI Z H, et al. Performance enhancement of industrial high loaded gas compressor using Coanda jet flap[J]. Energy, 2019, 172: 618-629. |
5 | PENDAR M R, PáSCOA J C. Numerical investigation of plasma actuator effects on flow control over a three-dimensional airfoil with a sinusoidal leading edge[J]. Journal of Fluids Engineering, 2022, 144(8): 081208. |
6 | FIETZKE B, MIHALYOVICS J, KING R, et al. Binary repetitive model predictive active flow control applied to an annular compressor stator cascade with periodic disturbances[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(1): 011029. |
7 | 张博涛, 刘波, 王何建. 端壁抽吸控制下攻角对压气机叶栅叶尖泄漏流动的影响[J]. 航空动力学报, 2020, 35(11): 2400-2412. |
ZHANG B T, LIU B, WANG H J. Impact of incidence angle on tip leakage flow control by endwall suction in a compressor cascade[J]. Journal of Aerospace Power, 2020, 35(11): 2400-2412 (in Chinese). | |
8 | 李铮, 徐聪, 张健, 等. 等离子体合成射流激励器高速流场逆向喷流控制[J]. 航空学报, 2022, 43(S2): 228-235. |
LI Z, XU C, ZHANG J, et al. Reverse jet flow control by plasma synthetic jet actuator in high speed flow field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 228-235 (in Chinese). | |
9 | MACK M, NIEHUIS R, FIALA A, et al. Boundary layer control on a low pressure turbine blade by means of pulsed blowing[J]. Journal of Turbomachinery, 2013, 135(5): 051023. |
10 | 叶志贤, 方元祺, 邹建锋, 等. 合成射流激励器流场PIV实验及模态分析[J]. 推进技术, 2021, 42(2): 258-271. |
YE Z X, FANG Y Q, ZOU J F, et al. Synthetic jet actuator PIV experiments and modal analysis[J]. Journal of Propulsion Technology, 2021, 42(2): 258-271 (in Chinese). | |
11 | HOU Z S, XIONG S S. On model-free adaptive control and its stability analysis[J]. IEEE Transactions on Automatic Control, 2019, 64(11): 4555-4569. |
12 | BECKER R, KING R, PETZ R, et al. Adaptive closed-loop separation control on a high-lift configuration using extremum seeking[J]. AIAA Journal, 2007, 45(6): 1382-1392. |
13 | OLIVETT A, CORRAO P, KARAMI M A. Flow control and separation delay in morphing wing aircraft using traveling wave actuation[J]. Smart Materials and Structures, 2021, 30(2): 025028. |
14 | BESELT C, ECK M, PEITSCH D. Three-dimensional flow field in highly loaded compressor cascade[J]. Journal of Turbomachinery, 2014, 136(10): 101007. |
15 | NGUYEN N T, BRIGHT M M, CULLEY D. Adaptive feedback optimal control of flow separation on stators by air injection[J]. AIAA Journal, 2007, 45(6): 1393-1405. |
16 | STAATS M, NITSCHE W, STEINBERG S J, et al. Closed-loop active flow control of a non-steady flow field in a highly-loaded compressor cascade[J]. CEAS Aeronautical Journal, 2017, 8(1): 197-208. |
17 | LANDSBERG T J, KRASNOFF E. An experimental study of rectilinear jet-flap cascades[J]. Journal of Basic Engineering, 1972, 94(1): 97-104. |
18 | FISCHER S, SAATHOFF H, RADESPIEL R. Two-dimensional RANS simulations of the flow through a compressor cascade with jet flaps[J]. Aerospace Science and Technology, 2008, 12(8): 618-626. |
19 | VORREITER A, FISCHER S, SAATHOFF H, et al. Numerical investigations of the efficiency of circulation control in a compressor stator[J]. Journal of Turbomachinery, 2012, 134(2): 021012. |
20 | ZHANG J, DU J, ZHANG M, et al. Aerodynamic performance improvement of a highly loaded compressor airfoil with coanda jet flap[J]. Journal of Thermal Science, 2022, 31(1): 151-162. |
21 | DEUTSCH S, ZIERKE W C. The measurement of boundary layers on a compressor blade in cascade: Part 1—A unique experimental facility[J]. Journal of Turbomachinery, 1987, 109(4): 520-526. |
22 | FISCHER S, SAATHOFF H, RADESPIEL R. Numerical and experimental investigation on a low-speed compressor cascade with circulation control[C]∥Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2009: 219-228. |
23 | 王心毅. 康达喷气叶栅流动分离机理及喷气量控制方法研究[D]. 北京:北京科技大学, 2020. |
WANG X Y. Research on the Coanda jet cascade flow separation mechanism and jet volume control method[D]. Beijing: University of Science and Technology Beijing, 2020 (in Chinese). | |
24 | 李艺雯. 康达喷气叶型设计方法及其在高负荷压气机中的应用研究[D]. 北京: 中国科学院大学, 2018. |
LI Y W. Design method of Coanda jet blade profile and its application in high load compressor[D].Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese). |
/
〈 |
|
〉 |