论文

跨介质飞行器近水面滑跳流固耦合仿真及可滑跳区域研究

  • 罗剑桥 ,
  • 解春雷 ,
  • 金泽华 ,
  • 孟军辉
展开
  • 1.北京理工大学 宇航学院,北京  100081
    2.中国航天科技创新研究院,北京  100176
    3.北京理工大学重庆创新中心,重庆  401120
.E-mail: mengjh@bit.edu.cn

收稿日期: 2023-02-28

  修回日期: 2023-04-17

  录用日期: 2023-05-25

  网络出版日期: 2023-06-09

基金资助

北京理工大学科技创新计划项目(2021CX01018)

Water-skipping fluid-structure interaction simulation and slippable area study of trans-medium vehicle

  • Jianqiao LUO ,
  • Chunlei XIE ,
  • Zehua JIN ,
  • Junhui MENG
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing  100081,China
    2.China Academy of Aerospace Science and Innovation,Beijing  100176,China
    3.Beijing Institute of Technology Chongqing Innovation Center,Chongqing  401120,China
E-mail: mengjh@bit.edu.cn

Received date: 2023-02-28

  Revised date: 2023-04-17

  Accepted date: 2023-05-25

  Online published: 2023-06-09

Supported by

Science and Technology Innovation Program of Beijing Institute of Technology(2021CX01018)

摘要

近水面滑跳是一种包含触水离水过程的掠水飞行方式,将其应用于新型跨介质飞行器的设计,可有效提升飞行器反舰攻击突防能力和自身生存能力。由于运动体近水面滑跳涉及速度和姿态角等多种运动参数,运动机理复杂,对于全尺寸复杂外形的跨介质飞行器,利用有限元仿真和飞行试验分析获取不同初始运动参数对近水面滑跳的影响规律,需要研究的工况众多,工作量较大。为了能够将简单缩比尺寸平板运动体应用于近水面滑跳仿真分析和试验设计中,对流体相似原理在近水面滑跳运动特性上的可预测性进行了验证。分别基于任意拉格朗日-欧拉描述的流固耦合方法和简单二元平板滑行理论,研究了复杂跨介质飞行器和简单平板运动体近水面滑跳运动特性,分析确定了2种运动体包含多个影响参数的可滑跳区域,并进一步基于相似原理探究了两者的关系。结果表明:所提出的跨介质飞行器的可滑跳区域分布与初始速度倾角几乎无关,可滑跳区域随初始速度增大而扩大,并最终趋于稳定;简单平板模型可用于模型试验和仿真分析,通过相似原理对复杂跨介质飞行器的可滑跳区域进行反推估计,能够为跨介质飞行器初步设计阶段的工程求解提供新思路。

本文引用格式

罗剑桥 , 解春雷 , 金泽华 , 孟军辉 . 跨介质飞行器近水面滑跳流固耦合仿真及可滑跳区域研究[J]. 航空学报, 2023 , 44(21) : 528632 -528632 . DOI: 10.7527/S1000-6893.2023.28632

Abstract

Water-skipping is a kind of water skimming flight mode which includes the process of touching and leaving water surface, and its application to the design of a new trans-medium vehicle can effectively improve the anti-ship penetration capability of flight vehicle and its own survival capability. Because the water-skipping of moving body involves a variety of kinematic parameters such as velocity and attitude angle, the kinematic mechanism is complex. For a full-size trans-medium vehicle with complex shape, it needs to study a large number of working conditions to obtain the effects of initial value of different kinematic parameters on the water-skipping process by finite element simulation and flight test analysis, thus the workload is very heavy. To apply a simple scaled-down plate moving body to the water-skipping simulation analysis and experimental design, the predictability of the fluid similarity principle on the kinematic characteristics of the water-skipping process is verified. Based on the fluid-structure interaction method described by arbitrary Lagrange-Euler and the gliding theory of simple two-dimensional plate, the water-skipping kinematic characteristics of the complex trans-medium vehicle and the simple plate moving body are investigated, respectively, the skippable area of the two moving bodies, which contain multiple influence parameters, is analyzed and determined, and the relationship between them is further explored based on the similarity principle. The results show that the skippable area distribution of the proposed trans-medium vehicle is almost independent of the initial flight path angle, and the skippable area expands with the increase of the initial velocity and eventually stabilizes; the simple plate model can be used for model test and simulation analysis, and new ideas for engineering solution in the preliminary design phase of a trans-medium vehicle can be provided by using similarity principle to inversely estimate the skippable area of the complex trans-medium vehicle.

参考文献

1 刘祥, 李天雄, 李林, 等. 入水参数对“水漂式”航行体跨介质运动影响数值仿真分析[J]. 宇航总体技术20204(3): 62-70.
  LIU X, LI T X, LI L, et al. Analysis of influence of water entry parameters on cross-medium movement of “water drift” aerial-aquatic vehicle[J]. Astronautical Systems Engineering Technology20204(3): 62-70 (in Chinese).
2 陈国明, 胡俊华, 刘安, 等. 入射条件对射弹入水跳弹行为的影响研究[J]. 中北大学学报(自然科学版)201940(5): 400-406.
  CHEN G M, HU J H, LIU A, et al. Research on the influence of incident conditions on ricochet behavior during water-entry process[J]. Journal of North University of China (Natural Science Edition)201940(5): 400-406 (in Chinese).
3 JOHNSON W. Ricochet of non-spinning projectiles, mainly from water, Part I: Some historical contributions[J]. International Journal of Impact Engineering199821(1/2): 15-24.
4 JOHNSON W. The ricochet of spinning and non-spinning spherical projectiles, mainly from water, Part II: An outline of theory and warlike applications[J]. International Journal of Impact Engineering199821(1/2): 25-34.
5 田北晨, 刘涛涛, 吴钦, 等. 跨介质飞行器触水滑跳运动特性数值模拟[J]. 兵工学报202243(3): 586-598.
  TIAN B C, LIU T T, WU Q, et al. Numerical simulation on kinematic characteristics of trans-media aircraft during water-skipping[J]. Acta Armamentarii202243(3): 586-598 (in Chinese).
6 CLANET C, HERSEN F, BOCQUET L. Secrets of successful stone-skipping[J]. Nature2004427(6969): 29.
7 ROSELLINI L, HERSEN F, CLANET C, et al. Skipping stones[J]. Journal of Fluid Mechanics2005543: 137-146.
8 LYU X J, YUN H L, WEI Z Y. Experimental study of a sphere bouncing on the water[J]. Journal of Marine Science and Application202120(4): 714-722.
9 TSAI H W, WU W F, LAI C L. An experimental study of non-spinning stone-skipping process[J]. Experimental Thermal and Fluid Science2021123: 110319.
10 NAGAHIRO S I, HAYAKAWA Y. Theoretical and numerical approach to “magic angle” of stone skipping[J]. Physical Review Letters200594(17): 174501.
11 BOCQUET L. The physics of stone skipping[J]. American Journal of Physics200371(2): 150-155.
12 赵坤. 水漂动力学建模与仿真[D]. 哈尔滨: 哈尔滨工业大学, 2014: 1-67.
  ZHAO K. Dynamics modeling and simulation of hydroplaning[D]. Harbin: Harbin Institute of Technology, 2014: 1-67 (in Chinese).
13 TANG J, ZHAO K, CHEN H T, et al. Trajectory and attitude study of a skipping stone[J]. Physics of Fluids202133(4): 043316.
14 付晓琴, 李阳辉, 卢昱锦, 等. 二维平板水漂运动数值模拟[J]. 航空学报202142(6): 124351.
  FU X Q, LI Y H, LU Y J, et al. Numerical simulation of two-dimensional plate skipping[J]. Acta Aeronautica et Astronautica Sinica202142(6): 124351 (in Chinese).
15 LI C H, WANG C, WEI Y J, et al. Three-dimensional numerical simulation of cavity dynamics of a stone with different spinning velocities[J]. International Journal of Multiphase Flow2020129: 103339.
16 LI C H, WANG C, WEI Y J, et al. Hydrodynamic force and attitude angle characteristics of a spinning stone impacting a free surface[J]. Physics of Fluids202133(12): 123309.
17 LI C H, WANG C, WEI Y J, et al. Numerical investigation on the cavity dynamics and deviation characteristics of skipping stones[J]. Journal of Fluids and Structures2021104: 103301.
18 闫蕊. 基于SPH方法的结构物入水若干问题研究[D]. 西安: 西北工业大学, 2016: 66-67.
  YAN R. Research on some problems in structure impact with water using SPH method[D]. Xi’an: Northwestern Polytechnical University, 2016: 66-67 (in Chinese).
19 YAN R, MONAGHAN J J. SPH simulation of skipping stones[J]. European Journal of Mechanics–B/Fluids201761: 61-71.
20 邬明. LS-DYNA的ALE方法在圆盘击水滑跳中的应用[J]. 科学技术与工程201111(33): 8247-8251.
  WU M. Numerical simulation research on bounce of circular disks base on the ALE of LS-DYNA[J]. Science Technology and Engineering201111(33): 8247-8251 (in Chinese).
21 陈诗伟. 基于ANSYS/LS-DYNA的圆盘击水弹跳研究[J]. 舰船电子工程201333(1): 122-124.
  CHEN S W. Research on the skipping disk based on the ALE method in ANSYS/LS-DYNA[J]. Ship Electronic Engineering201333(1): 122-124 (in Chinese).
22 COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics2003191(2): 448-475.
23 赵连恩, 韩端锋. 高性能船舶水动力原理与设计[M]. 修订版. 哈尔滨: 哈尔滨工程大学出版社, 2007: 124-125.
  ZHAO L E, HAN D F. Hydrodynamic principle and design of high performance ship[M]. Harbin: Harbin Engineering University Press, 2007: 124-125 (in Chinese).
24 耿玺, 史志伟. 面向过失速机动的风洞动态试验相似准则探讨[J]. 实验流体力学201125(3): 41-45.
  GENG X, SHI Z W. Similarity criterion of the wind tunnel test for the post-stall maneuver[J]. Journal of Experiments in Fluid Mechanics201125(3): 41-45 (in Chinese).
25 王建东, 庄佳园, 罗靖, 等. 滑行艇参数化建模方法[J]. 华中科技大学学报(自然科学版)202048(12): 83-88.
  WANG J D, ZHUANG J Y, LUO J, et al. Parametric modeling method of planing hulls[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition)202048(12): 83-88 (in Chinese).
26 HUMBLE S. Skimming and skipping stones[J]. Teaching Mathematics and Its Applications: An International Journal of the IMA200726(2): 95-102.
27 施内克鲁特. 船舶水动力学[M]. 咸培林, 译. 上海: 上海交通大学出版社, 1997: 288-289.
  SCHNEEKLUTH. Hydromechanik zum schiffsentwurf [M]. Translated by XIAN P L. Shanghai: Shanghai Jiao Tong University Press, 1997: 288-289 (in Chinese).
28 王曼, 刘毅. 面向飞行器概念设计的动网格技术[J]. 计算机工程与科学201335(7): 16-22.
  WANG M, LIU Y. Dynamic grid technology for aircraft conceptual design[J]. Computer Engineering & Science201335(7): 16-22 (in Chinese).
29 张珍铭, 丁运亮, 刘毅, 等. 适用于概念设计的再入飞行器外形优化设计方法[J]. 航空学报201132(11): 1971-1979.
  ZHANG Z M, DING Y L, LIU Y, et al. Shape optimization design method for the conceptual design of reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica201132(11): 1971-1979 (in Chinese).
文章导航

/