高超声速有攻角锥裙直接数值模拟
收稿日期: 2023-02-24
修回日期: 2023-03-17
录用日期: 2023-04-06
网络出版日期: 2023-04-11
基金资助
国家自然科学基金(11972356)
Direct numerical simulation of hypersonic cone-flare model at angle of attack
Received date: 2023-02-24
Revised date: 2023-03-17
Accepted date: 2023-04-06
Online published: 2023-04-11
Supported by
National Natural Science Foundation of China(11972356)
采用直接数值模拟方法对有攻角的高超声速7°~34°锥裙开展了数值研究,通过对比0°、90°、180°周向子午面,评估了三维横流效应对激波/边界层干扰的影响规律和作用机制,包括壁面压力、摩阻、热流分布,分离泡非定常运动,再附边界层演化等。研究发现,不同周向站位均出现流动分离,横流区、迎风区内复杂激波结构与边界层相互作用导致壁面压力、摩阻、热流显著升高。热流与压力的比值在干扰区上升后由于再附降低,而热流与摩阻的雷诺比拟关系在分离区则完全失效。分离泡面积脉动的功率谱结果表明,分离泡非定常膨胀/收缩运动呈低频特征,且分离泡呼吸与激波低频振荡在横流区密切相关,在迎风区存在迟滞,而在背风区不相关。速度脉动场的本征正交分解结果表明,分离区的低频特征与低阶模态相应的剪切层附近大尺度结构相关。对下游再附边界层演化分析指出,攻角的存在导致雷诺应力在再附点附近大幅增强,其流向分量的恢复最为迅速,雷诺应力分量的峰值位置在背风区沿流向持续外移,而在迎风区、横流区已迅速向内层恢复。此外,雷诺应力各向异性不变量分布进一步表明干扰下游的近壁区湍流各向异性峰值在背风区弱于迎风区。
赖江 , 范召林 , 王乾 , 董思卫 , 童福林 , 袁先旭 . 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024 , 45(2) : 128610 -128610 . DOI: 10.7527/S1000-6893.2023.28610
A direct numerical simulation of a hypersonic 7°-34° cone-flare model at an angle of attack is carried out. By comparing the flow characteristics on 0°, 90° and 180° sections, we evaluate the effect of crossflow on shock wave and boundary layer interaction in terms of the distribution of wall pressure, skin friction and heat transfer, the unsteady motion of the separation bubble, and the evolution of the reattached boundary layer. It is found that the flow separation occurs near the corner, and the interaction of the shock wave and boundary layer in the crossflow and windward region leads to a significant increase in wall pressure, skin friction, and heat transfer. The ratio of heat transfer to pressure exhibits a rise in the interaction region, followed by a drop caused by the reattachment, while the Reynolds analogy is completely invalid in the separation zone. Low-frequent unsteady expansion/contraction motion of the separation bubble is revealed through spectral analysis of the bubble area fluctuation. It is closely related to the low frequency shock wave oscillation in the crossflow region; however, hysteresis occurs in the windward region while is irrelevant in the leeward region. Based on the proper orthogonal decomposition results of the velocity fluctuation field, the separation region is related to large-scale structures near the shear layer in the low-order modes. The evolution of the reattached boundary layer shows the drastic Reynolds stress increase in vicinity of the reattachment point caused by the angle of attack, with the streamwise component recovering rapidly. Meanwhile, the peak location of Reynolds stress components continues to move outward in the leeward region, and has rapidly recovered to the inner layer in the windward region and the crossflow region. In addition, the distribution of Reynolds stress anisotropy invariants further indicates that the peak value of the turbulence anisotropy in the near-wall region downstream of the interaction is weaker in the leeward region than in the windward region.
1 | GREEN J E. Interactions between shock waves and turbulent boundary layers[J]. Progress in Aerospace Sciences, 1970, 11: 235-340. |
2 | DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39: 1517-1531. |
3 | GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. |
4 | LIGRANI P M, MCNABB E S, COLLOPY H, et al. Recent investigations of shock wave effects and interactions[J]. Advances in Aerodynamics, 2020, 2: 4. |
5 | GAITONDE D V, ADLER M C. Dynamics of three-dimensional shock-wave/boundary-layer interactions[J]. Annual Review of Fluid Mechanics, 2023, 55: 291-321. |
6 | PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6): 065113. |
7 | PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 2011, 49(6): 1307-1312. |
8 | CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 469-492. |
9 | 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. |
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese). | |
10 | FANG J, ZHELTOVODOV A A, YAO Y F, et al. On the turbulence amplification in shock-wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2020, 897: A32. |
11 | 童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰分离泡直接数值模拟[J]. 航空学报, 2022, 43(3): 125437. |
TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of shock wave/turbulent boundary layer interference separation bubble[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125437 (in Chinese). | |
12 | HOLDEN M. Database of aerothermal measurements in hypersonic flow “building block” experiments[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
13 | WRIGHT M J, SINHA K, OLEJNICZAK J, et al. Numerical and experimental investigation of double-cone shock interactions[J]. AIAA Journal, 2000, 38(12): 2268-2276. |
14 | NOMPELIS I, CANDLER G V, HOLDEN M S. Effect of vibrational nonequilibrium on hypersonic double-cone experiments[J]. AIAA Journal, 2003, 41(11): 2162-2169. |
15 | CANDLER G, NOMPELIS I, DRUGUET M C. Navier-Stokes predictions of hypersonic double-cone and cylinder-flare flow fields[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
16 | TUMUKLU O, THEOFILLS V, LEVIN D A. On the unsteadiness of shock-laminar boundary layer interactions of hypersonic flows over a double cone[J]. Physics of Fluids, 2018, 30(10): 106111. |
17 | HOLDEN M. Experimental studies of quasi-two-dimensional and three-dimensional viscous interaction regions induced by skewed-shock and swept-shock boundary layer interaction[C]∥ Proceedings of the 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston: AIAA, 1984. |
18 | HOLDEN M, HAVENER A, LEE C. Shock wave/turbulent boundary layer interaction in high-reynolds-number hypersonic flows[C]∥ Proceedings of the 10th Aerospace Sciences Meeting. Reston: AIAA, 1987. |
19 | 冈敦殿. 超声速平板突起物及双锥绕流实验研究[D]. 长沙: 国防科学技术大学, 2013: 43-61. |
GANG D D. Experimental study on supersonic flat plate protrusion and double cone flow[D].Changsha: National University of Defense Technology, 2013: 43-61. (in Chinese) | |
20 | RUNNING C L, JULIANO T J, JEWELL J S, et al. Hypersonic shock-wave/boundary-layer interactions on a cone/flare model[C]∥Proceedings of the 2018 Fluid Dynamics Conference. Reston: AIAA, 2018. |
21 | RUNNING C L, JULIANO T J, JEWELL J S, et al. Hypersonic shock-wave/boundary-layer interactions on a cone/flare[J]. Experimental Thermal and Fluid Science, 2019, 109: 109911. |
22 | RUNNING C L, JULIANO T J, BORG M P, et al. Characterization of post-shock thermal striations on a cone/flare[J]. AIAA Journal, 2020, 58(5): 2352-2358. |
23 | RUNNING C L, JULIANO T J. Global measurements of hypersonic shock-wave/boundary-layer interactions with pressure-sensitive paint[J]. Experiments in Fluids, 2021, 62(5): 91. |
24 | SHIPLYUK A N. Experimental investigation of stability of a hypersonic boundary layer on a cone-flare model[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(4): 589-595. |
25 | BEDAREV I A, MASLOV A A, SIDORENKO A A, et al. Experimental and numerical study of a hypersonic separated flow in the vicinity of a cone-flare model[J]. Journal of Applied Mechanics and Technical Physics, 2002, 43(6): 867-876. |
26 | FRAYSSINET O. Numerical analysis of a separated flow on a supersonic cone flare model[C]∥Proceedings of the 34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016. |
27 | TONG F L, DUAN J Y, LAI J, et al. Hypersonic shock wave and turbulent boundary layer interaction in a sharp cone/flare model[J]. Chinese Journal of Aeronautics, 2022, 36(3): 80-95. |
28 | SIVASUBRAMANIAN J, FASEL H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768: 175-218. |
29 | HUANG J J, DUAN L, CASPER K M, et al. Direct numerical simulation of turbulent pressure fluctuations over a cone at Mach 8[C]∥Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
30 | PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3): 530-545. |
31 | MARTíN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289. |
32 | WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4): 879-889. |
33 | POINSOT T J. Boundary conditions for direct simulations of compressible viscous flows[J]. Journal of Computational Physics, 1992, 101: 101-129. |
34 | BACK L H, CUFFEL R F. Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves[J]. AIAA Journal, 1970, 8(10): 1871-1873. |
35 | ROY C J, BLOTTNER F G. Review and assessment of turbulence models for hypersonic flows[J]. Progress in Aerospace Sciences, 2006, 42(7-8): 469-530. |
36 | MURRAY N, HILLIER R, WILLIAMS S. Experimental investigation of axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions[J]. Journal of Fluid Mechanics, 2013, 714: 152-189. |
37 | PRIEBE S, MARTíN M. Turbulence in a hypersonic compression ramp flow[J]. Physical Review Fluids, 2021, 6(3): 034601. |
38 | LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2006, 565: 135. |
39 | A-M SCHREYER, SAHOO D, WILLIAMAS O J H, et al. Experimental investigation of two hypersonic shock/turbulent boundary-layer interactions[J]. AIAA Journal, 2018, 56(12): 4830-4844. |
40 | PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613: 205-231. |
41 | LUMLEY J L. Computational modeling of turbulent flows[M]∥Advances in Applied Mechanics. Amsterdam: Elsevier, 1979: 123-176. |
/
〈 |
|
〉 |