流体力学与飞行力学

基于新型高维代理模型的气动外形设计方法

  • 赵欢 ,
  • 高正红 ,
  • 夏露
展开
  • 西北工业大学 航空学院,西安  710072

收稿日期: 2022-01-10

  修回日期: 2022-01-27

  录用日期: 2022-02-21

  网络出版日期: 2023-03-15

基金资助

国家自然科学基金(12102489);翼型、叶栅空气动力学重点实验室基金(614220121010126)

Aerodynamic shape design optimization method based on novel high⁃dimensional surrogate model

  • Huan ZHAO ,
  • Zhenghong GAO ,
  • Lu XIA
Expand
  • School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China

Received date: 2022-01-10

  Revised date: 2022-01-27

  Accepted date: 2022-02-21

  Online published: 2023-03-15

Supported by

National Natural Science Foundation of China(12102489);Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research(614220121010126)

摘要

随着现代飞行器性能需求的不断提高,飞行器精细化气动优化设计要求更高可信度的CFD数值分析及更多的独立设计变量,使得基于代理模型的全局优化算法在超过一定的设计变量后显著降低了效率,难以满足复杂工程的设计需求。而目前的高维代理模型过程复杂、时间花费高,缺乏对工程问题的广泛适应性。针对以上难题,提出了利用监督式非线性降维代理建模方法来缓解代理优化过程中的高维变量设计难题。该方法将核主成分分析(非线性)降维与高斯回归过程模型统一训练,自适应构建新型高维代理模型,并随着优化过程不断学习改进模型,建立了从高维输入到输出的准确映射,有效解决了传统高维代理模型训练时间花费高和适应性差等难题。然后基于该新型代理模型发展了适用于飞行器复杂气动设计的高维全局优化设计方法,并将其应用到美国航空航天学会(AIAA)优化小组发布的2个复杂跨声速优化算例中。通过与传统代理优化方法全面比较,验证了所提的方法能大幅提高飞行器高维变量全局优化效率和全局寻优能力。

本文引用格式

赵欢 , 高正红 , 夏露 . 基于新型高维代理模型的气动外形设计方法[J]. 航空学报, 2023 , 44(5) : 126924 -126924 . DOI: 10.7527/S10006893.2022.26924

Abstract

With the ever-increasing demands for the performance of modern aircraft,the refined aerodynamic shape design optimization of aircraft requires higher-fidelity CFD numerical analysis and more independent design variables,thus significantly reducing the efficiency of surrogate-based global optimization algorithm,particularly with an excessive number of design variables,Therefore,meeting the advanced demands for complex engineering problems becomes challenging. Furthermore,with complex modeling process and prohibitive computational costs,popular high-dimensional surrogate models,lack good adaptability to a wide range of engineering problems,This paper proposes a Supervised Nonlinear Dimension-Reduction Surrogate Modeling(SN-DRSM)method to alleviate the problem of high-dimensional variables in the process of surrogate-based design optimization. This method, integrates and trains the Kernel Principal Component Analysis(KPCA)nonlinear dimension-reduction model and the Gaussian regression process model as a whole,A new high-dimensional surrogate model is adaptively constructed,continuously studied in depth and improved during the optimization process,to establish an accurate mapping from high-dimensional inputs to outputs,thereby effectively solving the problems of high training cost and poor adaptability of traditional high-dimensional surrogate models. Then,an efficient high-dimensional global design optimization platform for complex aerodynamic configuration of aircraft is developed based on this novel surrogate model,and applied to two standard transonic optimization cases defined by AIAA aerodynamic optimization group. A comprehensive comparison with the traditional surrogate optimization methods, proves that the new method can significantly improve the global optimization efficiency and ability of high-dimensional aircraft variables.

参考文献

1 赵欢. 基于代理模型的高效气动优化与气动稳健设计方法研究[D]. 西安: 西北工业大学, 2020.
  ZHAO H. Research on efficient surrogate-based aerodynamic optimization and robust aerodynamic design methods[D]. Xi’an :Northwestern Polytechnical, 2020 (in Chinese).
2 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报202041(3): 623344.
  HAN Z H, XU C Z, QIAO J L,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica202041(3): 623344 (in Chinese).
3 HUANG J, GAO Z, ZHAO K,et al. Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J]. Chinese Journal of Aeronautics201023(5): 523-528.
4 CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal201351(6): 1342-1354.
5 BONS N P, HE X L, MADER C A,et al. Multimodality in aerodynamic wing design optimization[J]. AIAA Journal201957(3): 1004-1018.
6 POOLE D, ALLEN C, RENDALL T. Global optimization of wing aerodynamic optimization case exhibiting multimodality[J]. Journal of Aircraft201855 (4): 1576-1591.
7 ZHAO H, GAO Z, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology201768:530-542.
8 赵欢,高 正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法研究[J]. 航空学报202142(7): 124894.
  ZHAO H, GAO Z H, XIA L. Research on efficient robust aerodynamic design optimization method of high-speed and high-lift NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica202142(7): 124894 (in Chinese).
9 ZHAO H, GAO Z. Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J]. Engineering Computations201936(3):971-996.
10 ZHAO H, GAO Z, XU F,et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering201926(3):685-732.
11 ZHAO K, GAO Z, HUANG J,et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics201629(6): 1541-1552.
12 QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences200541(1): 1-28.
13 ZHAO H, GAO Z, XU F, et al. An efficient adaptive forward?backward selection method for sparse polynomial chaos expansion[J]. Computer Methods in Applied Mechanics and Engineering2019355: 456-491.
14 ZHAO H, GAO Z, XU F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization202164(2): 829-858.
15 LAURENCEAU J, SAGAUT P. Building efficient response surfaces of aerodynamic functions with kriging and cokriging[J]. AIAA Journal200846(2): 498-507.
16 HAN Z H, ZHANG Y, SONG C X,et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal201755(12): 4330-4346.
17 GUO L, NARAYAN A, ZHOU T. A gradient enhanced ?1-minimization for sparse approximation of polynomial chaos expansions[J]. Journal of Computational Physics2018367: 49-64.
18 SOBOL I M. Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modelling and Computational Experiments19931(4): 407-414.
19 SHAN S, WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization201041(2): 219-241.
20 LI G, WANG S W, RABITZ H,et al.Global uncertainty assessments by high dimensional model representations(HDMR)[J]. Chemical Engineering Science200257(21): 4445-4460.
21 ROY P C, DEB K. High dimensional model representation for solving expensive multi-objective optimization problems[C]∥ 2016 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2016.
22 DIEZ M, CAMPANA E F, STERN F. Design-space dimensionality reduction in shape optimization by Karhunen?Loève expansion[J]. Computer Methods in Applied Mechanics and Engineering2015283: 1525-1544.
23 BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics199325(1):539-575.
24 MOHAMMADI A, RAISEE M. Efficient uncertainty quantification of stochastic heat transfer problems by combination of proper orthogonal decomposition and sparse polynomial chaos expansion[J]. International Journal of Heat Mass Transfer2019128: 581-600.
25 MOHAMMADI A, RAISEE M. Stochastic field representation using bi-fidelity combination of proper orthogonal decomposition and Kriging[J]. Computer Methods in Applied Mechanics and Engineering2019357:112589.
26 MAATEN V D L, POSTMA E, HERIK V D J. Dimensionality reduction:A comparative[J]. Journal of Machine Learning Research200910 (66-71): 13.
27 CONSTANTINE P G, DOW E, WANG Q. Active subspace methods in theory and practice:Applications to kriging surfaces[J]. SIAM Journal on Scientific Computing201436(4): A1500-A1524.
28 GENG X, ZHAN D C, ZHOU Z H. Supervised nonlinear dimensionality reduction for visualization and classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 200535(6): 1098-1107.
29 LI J C, CAI J S, QU K. Surrogate-based aerodynamic shape optimization with the active subspace method[J]. Structural and Multidisciplinary Optimization201959(2): 403-419.
31 TRIPATHY R K, BILIONIS I. Deep UQ:Learning deep neural network surrogate models for high dimensional uncertainty quantification[J]. Journal of Computational Physics2018375: 565-588.
32 GENEVA N, ZABARAS N. Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks[J]. Journal of Computational Physics2019383: 125-147.
33 QIN T, WU K L, XIU D B. Data driven governing equations approximation using deep neural networks[J]. Journal of Computational Physics2019395: 620-635.
34 LYU Z, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal201553(4): 968-985.
35 LIANG H Q, ZHU M, WU Z. Using cross-validation to design trend function in kriging surrogate modeling[J]. AIAA Journal201452(10): 2313-2327.
36 LEDOUX S T, VASSBERG J C, YOUNG D P,et al. Study based on the AIAA aerodynamic design optimization discussion group test cases[J]. AIAA Journal201553(7): 1910-1935.
37 赵欢, 高正红, 王超, 等. 适用于高速层流翼型的计算网格研究[J]. 应用力学学报201835(2): 351-357, 454.
  ZHAO H, GAO Z H, WANG C,et al. Research on the computing grid of high speed laminar airfoil[J]. Chinese Journal of Applied Mechanics201835(2): 351-357,454 (in Chinese).
38 HAN Z, XU C, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics202033(1): 31-47.
39 ZHANG Y, HAN Z H, SHI L X,et al. Multi-round surrogate-based optimization for benchmark aerodynamic design problems[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
40 ZHAO H, GUO Z H, XIA L. Efficient aerodynamic analysis and optimation under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model [J]. Computers & Fluids2022246: 105643.
文章导航

/