流体力学与飞行力学

正常类飞机自然结冰试飞适航审定技术

  • 高郭池 ,
  • 张波 ,
  • 全敬泽 ,
  • 尹崇 ,
  • 丁丽 ,
  • 姜裕标
展开
  • 1.中国民用航空沈阳航空器适航审定中心,沈阳 110043
    2.哈尔滨飞机工业集团 飞机设计研究所,哈尔滨 150066
    3.中国空气动力研究与发展中心,绵阳 621000
.E-mail: gaogc@syacc.org

收稿日期: 2023-02-07

  修回日期: 2023-02-27

  录用日期: 2023-03-13

  网络出版日期: 2023-03-21

基金资助

民用飞机专项科研(MJ-2016-F-13)

Airworthiness certification technology of normal aircraft natural icing flight test

  • Guochi GAO ,
  • Bo ZHANG ,
  • Jingze QUAN ,
  • Chong YIN ,
  • Li DING ,
  • Yubiao JIANG
Expand
  • 1.Shenyang Aircraft Airworthiness Certification Center of CAAC,Shenyang 110043,China
    2.Aircraft Design and Research Institute,Harbin Aircraft Industry Group,Harbin 150066,China
    3.China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: gaogc@syacc.org

Received date: 2023-02-07

  Revised date: 2023-02-27

  Accepted date: 2023-03-13

  Online published: 2023-03-21

Supported by

Civil Aircraft Special Project Research(MJ-2016-F-13)

摘要

民用飞机如果申请已知结冰条件下飞行(FIKI),应按照除防冰相关适航规章条款要求进行表明符合性适航验证,其中自然结冰试飞是必须完成的重要环节。以Y12F飞机自然结冰试飞为例,以中国民用航空局(CAAC)和美国联邦航空管理局(FAA)发布的已知结冰条件下飞行相关指导文件为基础,结合Y12F飞机自然结冰试飞适航审定过程,分析总结了除防冰系统、测试设备及安装、试飞空域、结冰大气条件、试飞内容、试飞状态、试飞程序、试飞结果和分析以及结冰探测、结冰大气探测、冰积聚情况监测等方面的适航审定要求和关键技术,并对试飞过程中发现问题的分类、解决措施、设计改进方案以及完成的补充验证工作进行了阐述。经CAAC和FAA同步审查,Y12F飞机获得CAAC和FAA已知结冰条件下飞行的批准。构建的自然结冰试飞适航审定方法,成为FIKI适航验证重要实践指导性材料。

本文引用格式

高郭池 , 张波 , 全敬泽 , 尹崇 , 丁丽 , 姜裕标 . 正常类飞机自然结冰试飞适航审定技术[J]. 航空学报, 2024 , 45(1) : 128531 -128531 . DOI: 10.7527/S1000-6893.2023.28531

Abstract

When applying for Flight in Known Icing (FIKI), civil aircraft should demonstrate compliance with the requirements of de-ice and anti-ice related airworthiness regulations. Thereinto, natural icing flight test is a critical item which must be completed. Taking natural icing flight test of Y12F aircraft as an example, based on guidance documents issued by Civil Aviation Administration of China (CAAC) and Federal Aviation Administration (FAA) for FIKI and combined with the airworthiness certification process of natural icing flight test of Y12F aircraft, this paper analyzes and summarizes the airworthiness certification requirements and critical techniques of the de-ice and anti-ice system, the test instrument and installation, flight test airspace, icing atmospheric conditions,flight test items, flight test status, flight test procedures, flight test results and analysis, ice detection, icing atmospheric detection, icing accumulation state monitoring, etc. This paper also elaborates the classification of problems discovered during the flight test, the corresponding solutions, design improvement proposals, and completed supplementary certification work. Concurrently certificated by CAAC and FAA, Y12F aircraft obtained approval for FIKI from both authorities. The constructed airworthiness certification method for natural icing flight test has become an important practical guidance material for FIKI airworthiness certification.

参考文献

1 殷时军, 冯振宇, 王大蕴. 适航审定能力提升[M]. 北京: 中国民航出版社, 2018: 238-243.
  YIN S J, FENG Z Y, WANG D Y. The capabilities enhanced through ARJ21-700 certification [M]. Beijing: China Civil Aviation Publishing House, 2018: 238-243 (in Chinese).
2 沈浩, 韩冰冰, 刘振侠, 等. 运输类飞机结冰适航合格审定[M]. 上海: 上海交通大学出版社, 2018: 1-12.
  SHEN H, HAN B B, LIU Z X, et al. Airworthiness certification of transport aircraft in icing conditions[M]. Shanghai: Shanghai Jiao Tong University Press, 2018: 1-12 (in Chinese).
3 GREEN S D. A study of U.S. inflight icing accidents, 1978 to 2002[C]∥ 44th AIAA Aerospace sciences meeting and Exhibit. Reston: AIAA, 2006.
4 APPIAH K P. U.S. Inflight icing accidents and incidents, 2006 to 2010[D]. Knoxville: The University of Tennessee, 2011: 32-53.
5 LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences200137(8): 669-767.
6 CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics200335: 11-21.
7 POTAPCZUK M G. A review of NASA Lewis’ development plans for computational simulation of aircraft icing[C]∥ 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
8 BRAGG M, BROEREN A, STIRLING L. Ice-airfoil aerodynamics[J]. Progress in Aerospace Sciences200541(5): 323-362.
9 中华人民共和国国务院, 中华人民共和国中央军事委员会. 中华人民共和国飞行基本规则[M]. 北京: 中华人民共和国国务院, 中华人民共和国中央军事委员会, 2007.
  The State Council of the People’s Republic of China, The Central Military Commission of the People’s Republic of China. Flight basic rules of the People’s Republic of China[M]. Beijing: The State Council of the People’s Republic of China, The Central Military Commission of the People’s Republic of China, 2007 (in Chinese).
10 Federal Aviation Administration. Turbojet, turboprop, and turbofan engine induction system icing and ice ingestion: AC20-147A [S]. Washington, D.C.: FAA, 2014.
11 Federal Aviation Administration. Pilot guide flight in icing conditions: AC91-74B [S]. Washington, D.C.: FAA, 2015.
12 HICKMAN G A, GERARDI J J, FENG Y X, et al. Icing sensor and ice protection system, Revision 3 : NASA CR-194245[S]. Washington, D.C.: NASA, 1990.
13 HEINRICH A, ROSS R, ZUMWALT G, et al. Aircraft icing handbook. Volume 2[M]. New Zealand: Civil Aviation Authority, 2000.
14 JONES A R, LEWIS W. Recommended values of meteorological factors to be considered in the design of aircraft ice-prevention equipment : NACA-TN-1855[S]. Washington, D.C.: NACA, 1949.
15 BROEREN A P, BRAGG M B. Effect of residual and intercycle ice accretions on airfoil performance: DOT/FAA/AR-02/68 [S]. Washington, D.C.: FAA, 2002.
16 PELLICANO P. Guidance for new airplane icing certification projects[C]∥ SAE 2007 Aircraft & Engine Icing International Conference. New York: SAE, 2007.
17 PELLICANO P. Supercooled large droplet (SLD) icing and certification of Part 23 airplanes[C]∥ FAA 2009 Small Airplane Directorate Program Managers Meeting. Washington, D.C.: FAA, 2009.
18 SHIN J, BOND T H. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel: NASA TM105374[C]∥ 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
19 VECCHIONE L, DE MATTEIS P. An overview of the CIRA icing wind tunnel [C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
20 GONSALEZ J, ARRINGTON E. Aerodynamic calibration of the NASA Lewis icing research tunnel (1997 tests)[C]∥ 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998.
21 李勤红, 乔建军, 陈增江. Y7-200A飞机自然结冰飞行试验[J]. 飞行力学199917(2): 64-69.
  LI Q H, QIAO J J, CHEN Z J. Natural icing flight test for Y7?200A aircraft[J]. Flight Dynamics199917(2): 64-69 (in Chinese).
22 仝建辉. 结冰对飞机适航性影响及试飞验证[D]. 西安: 西北工业大学, 2000: 5-66.
  TONG J H. The effect of icing on airworthiness of aircraft and certification flight test[D]. Xi’an: Northwestern Polytechnical University, 2000: 5-66 (in Chinese).
23 杨新亮. ARJ21-700飞机机翼防冰系统自然结冰试飞方法[J]. 飞行力学201432(5): 460-463.
  YANG X L. ARJ21-700 aircraft WAI natural icing flight test approach[J]. Flight Dynamics201432(5): 460-463 (in Chinese).
24 霍西恒, 王大伟, 李革萍. 民机防冰系统自然结冰试飞技术研究[J]. 民用飞机设计与研究20141: 25-29.
  HUO X H, WANG D W, LI G P. Research of natural icing flight test of anti-ice system for civil aircraft[J]. Civil Aircraft Design and Research20141: 25-29 (in Chinese).
25 朱春玲, 朱程香. 飞机结冰及其防护[M]. 北京: 科学出版社, 2016.
  ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016 (in Chinese).
26 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.
  LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2016 (in Chinese).
27 王宗衍. 冰风洞与结冰动力学[J]. 制冷学报199920(4): 15-17.
  WANG Z Y. Icing wind tunnel and icing aerodynamics[J]. Journal of Refrigeration199920(4): 15-17 (in Chinese).
28 陈维建, 张大林. 飞机机翼结冰过程的数值模拟[J]. 航空动力学报200520(6): 1010-1017.
  CHEN W J, ZHANG D L. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power200520(6): 1010-1017 (in Chinese).
29 周莉, 徐浩军, 龚胜科, 等. 飞机结冰特性及防除冰技术研究[J]. 中国安全科学学报201020(6): 105-110.
  ZHOU L, XU H J, GONG S K, et al. Research of aircraft icing characteristics and anti-icing and de-icing technology[J]. China Safety Science Journal201020(6): 105-110 (in Chinese).
30 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报201637(3): 865-872.
  QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica Sinica201637(3): 865-872 (in Chinese).
31 周驰, 李颖晖, 郑无计, 等. 结冰飞机着陆阶段飞行安全包线确定及操纵应对策略[J]. 航空学报201839(12): 122165.
  ZHOU C, LI Y H, ZHENG W J, et al. Flight safety envelope determination and maneuvering coping strategy for icing aircraft during landing phase[J]. Acta Aeronautica et Astronautica Sinica201839(12): 122165 (in Chinese).
32 王梓旭, 沈浩, 郭龙, 等. 3 m×2 m结冰风洞云雾参数校测方法[J]. 实验流体力学201832(2): 61-67.
  WANG Z X, SHEN H, GUO L, et al. Cloud calibration method of 3 m × 2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics201832(2): 61-67 (in Chinese).
33 倪章松, 刘森云, 王桥, 等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学201933(6): 46-53.
  NI Z S, LIU S Y, WANG Q, et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics201933(6): 46-53 (in Chinese).
34 郭向东, 张平涛, 张珂, 等. 3 m×2 m结冰风洞热流场品质提高及评估[J]. 实验流体力学202135(4): 41-51.
  GUO X D, ZHANG P T, ZHANG K, et al. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics202135(4): 41-51 (in Chinese).
35 郭向东, 张平涛, 赵照, 等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报202041(10): 200-214.
  GUO X D, ZHANG P T, ZHAO Z, et al. Airworthiness application compliance verification of cloud flow field in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica202041(10): 200-214 (in Chinese).
36 于庆芳. Y12II型飞机结冰对其飞行特性影响的试飞研究[J]. 飞行力学199513(2): 63-70.
  YU Q F. Flying test research of the icing and its effects on flight performance for Y12II aircraft[J]. Flight Dynamics199513(2): 63-70 (in Chinese).
37 廖美东. Y12II型飞机防冰能力的飞行验证[J]. 飞行力学19897(3): 66-73.
  LIAO M D. Certification of Y12II aircraft for flight capability in icing conditions[J]. Flight Dynamics19897(3): 66-73 (in Chinese).
38 中国民用航空局. 正常类、实用类、特技类和通勤类飞机适航规定: CCAR-23-R3 [S]. 北京:中国民用航空局,2004.
  Civil Aviation Administration of China. Airworthiness standards: Normal, utility, acrobatic, and commuter category airplanes: CCAR-23-R3 [S]. Beijing:CAAC, 2004 (in Chinese).
39 Federal Aviation Administration. CFR 14 Part 23 Airworthiness standards: Normal, utility, acrobatic, and commuter category airplanes [S]. Washington, D.C.: FAA, 2008.
40 Federal Aviation Administration. Certification of Part 23 airplanes for flight in icing conditions: AC23.1419-2D [S]. Washington, D.C.: FAA, 2007.
41 Federal Aviation Administration. Aircraft ice protection: AC20-73A [S]. Washington, D.C.: FAA, 2006.
42 POTAPCZUK M G, LEWICE E. An Euler based ice accretion code: NASA TM-105389[R] Washington, D.C.: NASA, 1992.
43 RUFF G A, BERKOWITZ B M. Users manual for the NASA Lewis ice accretion prediction code (LEWICE): NASA CR-185129[R]. Washington, D.C.: NASA, 1990.
44 MINGIONE G, BRANDI V, ESPOSITO B. Ice accretion prediction on multi-element airfoils: AIAA-1997-0177[R]. Reston: AIAA, 1997.
45 CROCE G, BEAUGENDRE H, HABASHI W G. CHT3D: FENSAP-ICE conjugate heat transfer computations with droplet impingement and runback effects: AIAA-2002-0386[R]. Reston: AIAA, 2002.
46 BARTLETT C S. An empirical look at tolerances in setting icing test conditions with particular application to icing similitude: DOT/FAA/CT-87/31[R]. Washington, D.C.: FAA, 1988.
47 BRAGG M, BROEREN A, ADDY H, et al. Airfoil ice-accretion aerodynamic simulation[C]∥ 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
48 HEDDE T, GUFFOND D. Improvement of the ONERA 3D icing code and comparison with 3D experimental shapes: AIAA-93-0169[R]. Reston: AIAA, 1993.
49 MORENCY F, BEAUGENDRE H, BARUZZI G S, et al. FENSAP-ICE: A comprehensive 3D simulation system for in-flight icing: AIAA-2001-2566[R]. Reston: AIAA, 2001.
50 BEAUGENDRE H, MORENCY F, HABASHI W G. FENSAP-ICE: Roughness effects on ice shape prediction: AIAA-2003-1222[R]. Reston: AIAA, 2003.
51 CROWE C T, SCHWARZKOPF J D, SOMMERFELD M, et al. Multiphase flows with droplets and particles [M]. 2nd ed. Boca Raton: CRC Press, 2012.
52 FORTIN G, ILINCA A, LAFORTE J L, et al. Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling: AIAA-2003-1076[R]. Reston: AIAA, 2003.
53 FORTIN G, LAFORTE J L, BEISSWENGER A. Prediction of ice shapes on NACA0012 airfoil: AIAA-2003-01-2154[R]. Reston: AIAA, 2003.
54 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 54-60.
  WANG F J. Computational fluid dynamics analysis: Principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004: 54-60 (in Chinese).
55 周志宏, 李凤蔚, 李广宁. 基于两相流欧拉方法的翼型结冰数值模拟[J]. 西北工业大学学报201028(1): 138-142.
  ZHOU Z H, LI F W, LI G N. Applying Eulerian droplet impingement model to numerically simulating ice accretion but with some improvements[J]. Journal of Northwestern Polytechnical University201028(1): 138-142 (in Chinese).
56 杨胜华, 林贵平. 机翼结冰过程的数值模拟[J]. 航空动力学报201126(2): 323-330.
  YANG S H, LIN G P. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power201126(2): 323-330 (in Chinese).
57 中国民用航空总局, 美国联邦航空局. 中华人民共和国/美利坚合众国双边适航协议实施程序细则[EB]. 北京: 中国民用航空总局, 美国联邦航空局, 1995.
  General Administration of Civil Aviation of China, Federal Aviation Administration. U.S./People’s Republic of China Bilateral Airworthiness Agreement Schedule of Implementation Procedures[EB]. Beijing: CAAC/FAA1995.
58 高郭池, 李保良, 丁丽, 等. 气动除冰飞机结冰风洞试验技术[J]. 实验流体力学201933(2): 95-101.
  GAO G C, LI B L, DING L, et al. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics201933(2): 95-101 (in Chinese).
59 高郭池, 丁丽, 李保良, 等. 气动除冰类飞机结冰风洞试验适航审定技术[J]. 实验流体力学201933(2): 85-94.
  GAO G C, DING L, LI B L, et al. Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics201933(2): 85-94 (in Chinese).
60 王洪伟, 李先哲, 宋展. 通用飞机结冰适航验证关键技术及工程应用[J]. 航空学报201637(1): 335-350.
  WANG H W, LI X Z, SONG Z. Key airworthiness validation technologies for icing of general aviation aircraft and their engineering application[J]. Acta Aeronautica et Astronautica Sinica201637(1): 335-350 (in Chinese).
61 中国民用航空局. 航空器型号合格审定程序: AP-21-AA-2011-03-R4 [S]. 北京:中国民用航空局, 2011.
  Civil Aviation Administration of China. Type certification procedures for aircraft: AP-21-AA-2011-03-R4 [S]. Beijing: CAAC, 2011 (in Chinese).
62 中国民用航空局. 型号合格审定程序: AP-21-AA-2022-11 [S]. 北京: 中国民用航空局, 2022.
  Civil Aviation Administration of China. Type certification procedures for aircraft: AP-21-AA-2022-11 [S]. Beijing: CAAC, 2022 (in Chinese).
63 Federal Aviation Administration. Type certification: 8110.4C [S]. Washington, D.C.: FAA, 2011.
64 中国民用航空局. 民用航空产品和零部件合格审定规定: CCAR-21-R4 [S].北京: 中国民用航空局, 2017.
  Civil Aviation Administration of China. Airworthiness standards: Civil aviation products and parts: CCAR-21-R4 [S]. Beijing: CAAC, 2017 (in Chinese).
65 Federal Aviation Administration. CFR 14 Part 21 Certification procedures for products and articles [S]. Washington, D.C.: FAA, 2018.
66 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2016.
  Civil Aviation Administration of China. Airworthiness standards: Transport category airplanes: CCAR-25-R4 [S]. Beijing: CAAC, 2016 (in Chinese).
67 贾胜博. 飞机自然结冰试飞空域选择的研究[D]. 广汉: 中国民用航空飞行学院, 2015: 15-17.
  JIA S B. The research on select the airspace of aircraft nature icing test[D]. Guanghan: Civil Aviation Flight University of China, 2015: 15-17 (in Chinese).
68 张强, 范东方, 刘旭华. 自然结冰试飞成功的影响因素研究[J]. 航空科学技术201324(3): 43-45.
  ZHANG Q, FAN D F, LIU X H. A study on key factors to success of natural icing flight test[J]. Aeronautical Science and Technology201324(3): 43-45 (in Chinese).
69 BERNSTEIN B C, CAMPO W, ALGODAL L, et al. The embraer-170 and-190 natural icing flight campaigns: keys to success[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 264.
70 张杰, 周磊, 张洪, 等. 飞机结冰探测技术[J]. 仪器仪表学报200627(12): 1578-1586.
  ZHANG J, ZHOU L, ZHANG H, et al. Aircraft icing detection technology[J]. Chinese Journal of Scientific Instrument200627(12): 1578-1586 (in Chinese).
71 邹建红, 叶林, 安洁, 等. 用于气象观测的光纤结冰探测仪[J]. 仪表技术与传感器2012(4): 15-17, 40.
  ZOU J H, YE L, AN J, et al. Fiber-optic ice detector for meteorological observation[J]. Instrument Technique and Sensor2012(4): 15-17, 40 (in Chinese).
72 POLITOVICH M K, SAND W R. Proposed icing severity index based upon meteorology[C]∥ 4th International Conference on Aviation Weather Systems. Washington, D.C.: FAA, 1991: 24-27.
73 PRUZAN D, KHATKHATE A, HICKMAN G. Smart skin technology development for measuring ice accretion, stall, and high AOA aircraft performance, Part 1: Capacitive ice detector development[J]. Engineering, Environmental Science, 19932: 23-27.
74 CLAFFEY K J, JONES K F, RYERSON C C. Use and calibration of Rosemount ice detectors for meteorological research[J]. Atmospheric Research199536: 277-286.
75 王华, 王以伦, 张滨华. 基于磁致伸缩原理的结冰传感器设计理论[J]. 电工技术学报200318(6): 77-79, 11.
  WANG H, WANG Y L, ZHANG B H. Theory of designing ice detector based on magnetostriction[J]. Transactions of China Electrotechnical Society200318(6): 77-79, 11 (in Chinese).
76 ROY S, IZAD A, DEANN R G, et al. Smart ice detection systems based on resonant piezoelectric transducers[J]. Sensors and Actuators199869(3): 243-250.
77 IKIANDES A A, ARMSTRONG D J, HARE G G, et al. Fibre optic sensor technology for air conformal ice detection[C]∥ Industrial and Highway Sensors Technology. New York: SPIE, 2004: 357-368.
78 GLASS M, GRANTHAM D. Response of clound microthysical instruments to aircraft icing conditions[J]. Environmental Science, Physics, 19823: 21-26.
79 HOOVER G A. Aircraft ice detectors and related technologies for on-ground and in-flight applications: DOT/FAA/CT-92/27[R]. Washington, D.C.: FAA, 1993.
80 朱程香, 孙志国, 付斌, 等. 探头式结冰探测器安装位置分析[J]. 航空动力学报201126(12): 2676-2683.
  ZHU C X, SUN Z G, FU B, et al. Analysis on installation location of probe-style ice detectors[J]. Journal of Aerospace Power201126(12): 2676-2683 (in Chinese).
81 Federal Aviation Administration. Flight test guide for certification of Part23 airplanes: AC23-8B [S]. Washington, D.C.: FAA, 2003.
82 Federal Aviation Administration. Flight test guide for certification of Part23 airplanes: AC23-8C [S]. Washington, D.C.: FAA, 2011.
83 高郭池, 全敬泽, 李保良, 等. Y12F飞机局方审定飞行试验研究[J]. 飞行力学202038(1): 84-89.
  GAO G C, QUAN J Z, LI B L, et al. Research on the administration certification flight test of the Y12F aircraft[J]. Flight Dynamics202038(1): 84-89 (in Chinese).
84 王洪伟, 全敬泽, 乔伟, 等. 失速警告装置防冰冰风洞试验验证技术研究[J]. 航空科学技术202132(10): 61-67.
  WANG H W, QUAN J Z, QIAO W, et al. Research on anti-ice validation technology through icing wind tunnel test for stall warning device[J]. Aeronautical Science and Technology202132(10): 61-67 (in Chinese).
85 中国民用航空局. 审定试飞风险管理政策: ACM-MG-004 [S]. 北京: 中国民用航空局, 2022.
  Civil Aviation Administration of China. Risk management policy on certification flight test: ACM-MG-004 [S]. Beijing: CAAC, 2022 (in Chinese).
86 中国民用航空局. 中国民航试飞员和试飞工程师的职责、程序和培训要求: AP-21-AA-2012-33 [S]. 北京: 中国民用航空局, 2012 (in Chinese).
  Civil Aviation Administration of China. Responsibilities, procedures and training requirements of CAAC flight test pilots and flight test engineers: AP-21-AA-2012-33 [S]. Beijing: CAAC, 2012 (in Chinese).
87 中国民用航空局. 航空器型号合格审定试飞安全计划: AP-21-AA-2014-31R1 [S]. 北京:中国民用航空局, 2014.
  Civil Aviation Administration of China. Type certification flight test safety plan: AP-21-AA-2014-31R1 [S]. Beijing: CAAC, 2014 (in Chinese).
88 中国民用航空局. 正常类飞机适航规定: CCAR-23-R4 [S]. 北京:中国民用航空局,2022.
  Civil Aviation Administration of China. Airworthiness standards: Normal category airplanes: CCAR-23-R4 [S]. Beijing: CAAC, 2022 (in Chinese).
文章导航

/