航空发动机非定常流固热声耦合专栏

基于高效特征值分析方法的旋转失速先兆预测

  • 徐慎忍 ,
  • 何晨 ,
  • 孙大坤 ,
  • 袁蔡嘉 ,
  • 曹东明 ,
  • 赵家资 ,
  • 王丁喜
展开
  • 1.西北工业大学 动力与能源学院,西安  710072
    2.中国空气动力研究与发展中心,绵阳  621000
    3.北京航空航天大学 能源与动力工程学院,北京  100191
.E-mail: hechen@buaa.edu.cn

收稿日期: 2022-11-09

  修回日期: 2022-11-25

  录用日期: 2023-01-03

  网络出版日期: 2023-02-01

基金资助

国家自然科学基金(52006177);国防科技重点实验室基金(6142702200204)

Efficient eigenvalue analysis method for rotating stall inception

  • Shenren XU ,
  • Chen HE ,
  • Dakun SUN ,
  • Caijia YUAN ,
  • Dongming CAO ,
  • Jiazi ZHAO ,
  • Dingxi WANG
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an  710072,China
    2.China Aerodynamics Research and Development Center,Mianyang  621000,China
    3.School of Energy and Power Engineering,Beihang University,Beijing  100191,China
E-mail: hechen@buaa.edu.cn

Received date: 2022-11-09

  Revised date: 2022-11-25

  Accepted date: 2023-01-03

  Online published: 2023-02-01

Supported by

National Natural Science Foundation of China(52006177);National Defense Technology Key Laboratory Foundation(6142702200204)

摘要

旋转失速限制了压气机稳定工作的范围,对其进行深入理解并实现准确预测是控制失速、提高裕度的关键。现有模型大多基于一定程度的几何和流动简化,不考虑三维效应及流动复杂性,直接应用于三维压气机失速预测时仍面临巨大挑战。同时,尽管试验测量和模拟仿真水平不断提高,试验和数值模拟多为唯象研究,缺乏对压气机流动失稳根本原因的揭示。此外,由于三维复杂流动精细化测量和高保真模拟的复杂性,大多数失速研究针对某一压气机若干孤立工况开展,缺乏系统的参数化研究,难以提炼出旋转失速关键影响因素。为弥补试验测试空间分辨率低和非定常流动模拟成本高的缺陷,提出了一种基于三维流动方程高效特征值求解的全局稳定性分析方法。一方面可以获得试验测量难以达到的空间分辨率,另一方面能够以比非定常模拟小2~3个量级的成本获得丰富的三维流场小扰动发展过程。针对某典型跨声速压气机环形叶栅,所发展的分析方法计算成本仅为定常特性线计算的28%,相比于非定常计算实现了约155倍的加速,为压气机旋转失速准确快速预测和机理研究提供了重要的研究工具。

本文引用格式

徐慎忍 , 何晨 , 孙大坤 , 袁蔡嘉 , 曹东明 , 赵家资 , 王丁喜 . 基于高效特征值分析方法的旋转失速先兆预测[J]. 航空学报, 2023 , 44(14) : 628248 -628248 . DOI: 10.7527/S1000-6893.2023.28248

Abstract

Rotating stall limits the stable operating range of compressors, and a deep understanding and accurate prediction of this phenomenon is key to stall prediction and control. Existing models for stall prediction are based on simplification of the compressor geometry and flow, and thus applications of these models to stall onset prediction of actual compressors are faced with considerable challenges. Meanwhile, despite the progress in experimental measurements and flow simulations, most experiments and numerical simulations are phenomenological research, and did not reveal the root cause of compressor flow instability. Moreover, due to the complexity of three-dimensional flow measurements and the high cost of unsteady simulations, most stall studies are conducted only under isolated working conditions of a particular compressor, as a systematic parametric study to identify the key influencing factors is too costly. In order to circumvent the shortcomings of both measurements and unsteady simulations, a global stability analysis method based on the efficient eigenvalue solution of the three-dimensional flow governing equation is proposed. This method can obtain not only the spatial resolution that is difficult to achieve by experimental measurement, but also the same rich information of the three-dimensional flow perturbation development at a cost two to three orders smaller than the unsteady simulation. In this paper, for a typical transonic compressor annular cascade, the computational cost of the proposed method is only 28% of that for computing one steady speedline, and 155 times faster than the unsteady calculation. Therefore, the proposed method provides an important research tool for accurate and rapid prediction and mechanism research of rotational stall of compressors.

参考文献

1 DAY I J. Stall, surge, and 75 years of research[J]. Journal of Turbomachinery2016138(1): 011001.
2 EMMONS H W, PEARSON C E, GRANT H P. Compressor surge and stall propagation[J]. Journal of Fluids Engineering195577(4): 455-467.
3 MCDOUGALL N M, CUMPSTY N A, HYNES T P. Stall inception in axial compressors[J]. Journal of Turbomachinery1990112(1): 116-123.
4 GARNIER V H, EPSTEIN A H, GREITZER E M. Rotating waves as a stall inception indication in axial compressors[J]. Journal of Turbomachinery1991113(2): 290-301.
5 GREITZER E M. Review—Axial compressor stall phenomena[J]. Journal of Fluids Engineering1980102(2): 134-151.
6 DAY I J. Stall inception in axial flow compressors[J]. Journal of Turbomachinery1993115(1): 1-9.
7 HE L. Computational study of rotating-stall inception in axial compressors[J]. Journal of Propulsion and Power199713(1): 31-38.
8 HE L, ISMAEL J O. Computations of bladerow stall inception in transonic flows[J]. The Aeronautical Journal1999103(1025): 317-324.
9 BRANDVIK T, PULLAN G. An accelerated 3D Navier-Stokes solver for flows in turbomachines[J]. Journal of Turbomachinery2011133(2): 021025.
10 PULLAN G, YOUNG A M, DAY I J, et al. Origins and structure of spike-type rotating stall[J]. Journal of Turbomachinery2015137(5): 051007.
11 CROUCH J D, GARBARUK A, MAGIDOV D, et al. Origin of transonic buffet on aerofoils[J]. Journal of Fluid Mechanics2009628: 357-369.
12 TIMME S. Global instability of wing shock-buffet onset[J]. Journal of Fluid Mechanics2020885: A37.
13 SARTOR F, TIMME S. Delayed detached-eddy simulation of shock buffet on half wing-body configuration[J]. AIAA Journal201755(4): 1230-1240.
14 MASINI L, TIMME S, PEACE A J. Scale-resolving simulations of a civil aircraft wing transonic shock-buffet experiment[J]. AIAA Journal202058(10): 4322-4338.
15 HE W, TIMME S. Triglobal infinite-wing shock-buffet study[J]. Journal of Fluid Mechanics2021925: A27.
16 GORDON K A. Three-dimensional rotating stall inception and effects of rotating tip clearance asymmetry in axial compressors[D]. Cambridge: Massachusetts Institute of Technology, 1999.
17 SUN X F, LIU X H, HOU R W, et al. A general theory of flow-instability inception in turbomachinery[J]. AIAA Journal201351(7): 1675-1687.
18 LIU X H, SUN D K, SUN X F. Basic studies of flow-instability inception in axial compressors using eigenvalue method[J]. Journal of Fluids Engineering2014136(3): 031102.
19 SUN X F, MA Y F, LIU X H, et al. Flow stability model of centrifugal compressors based on eigenvalue approach[J]. AIAA Journal201654(8): 2361-2376.
20 HE C, MA Y F, LIU X H, et al. Aerodynamic instabilities of swept airfoil design in transonic axial-flow compressors[J]. AIAA Journal201856(5): 1878-1893.
21 SCHMID P J, DE PANDO M F, PEAKE N. Stability analysis for n-periodic arrays of fluid systems[J]. Physical Review Fluids20172(11): 113902.
22 AMESTOY P R, DUFF I S, L'EXCELLENT J Y, et al. MUMPS: A general purpose distributed memory sparse solver[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001: 121-130.
23 孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报202243(10): 527408.
  SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527408 (in Chinese).
24 XU S R, LI Y, HUANG X Q, et al. Robust Newton–Krylov adjoint solver for the sensitivity analysis of turbomachinery aerodynamics[J]. AIAA Journal202159(10): 4014-4030.
25 SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
26 ALLMARAS S R, JOHNSON F T. Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model[C]∥Seventh International Conference on Computational Fluid Dynamics (ICCFD7). 2012: 1-11.
27 HASCOET L, PASCUAL V. The Tapenade automatic differentiation tool: Principles, model, and specification[J]. ACM Transactions on Mathematical Software201339(3): 1-43.
28 GEBREMEDHIN A H, NGUYEN D, PATWARY M M ALI, et al. ColPack: Software for graph coloring and related problems in scientific computing[J]. ACM Transactions on Mathematical Software201340(1): 1-31.
29 SAAD Y. Iterative methods for sparse linear systems[M]. 2nd ed. Philadelphia: SIAM, 2003.
30 LEHOUCQ R B. Implicitly restarted Arnoldi methods and subspace iteration[J]. SIAM Journal on Matrix Analysis and Applications200123(2): 551-562.
31 LEHOUCQ R B, SORENSEN D C, YANG C. ARPACK user’s guide: Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods[M]. Philadelphia: SIAM, 1998.
32 HIGHAM D J, HIGHAM N J. MATLAB guide[M]. Philadelphia: SIAM, 2016.
33 VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python[J]. Nature Methods202017(3): 261-272.
34 STRAZISAR A J, POWELL J A. Laser anemometer measurements in a transonic axial flow compressor rotor[J]. Journal of Engineering for Power1981103(2): 430-437.
35 KRAKOS J A, DARMOFAL D L. Effect of small-scale output unsteadiness on adjoint-based sensitivity[J]. AIAA Journal201048(11): 2611-2623.
36 BREUGELMANS F A E, MATHIOUDAKIS K, CASALINI F. Rotating stall cells in a low-speed axial flow compressor[J]. Journal of Aircraft198522(3): 175-181.
文章导航

/