吊挂飞行对重型直升机空中共振稳定性的影响机理分析
收稿日期: 2022-09-08
修回日期: 2022-09-21
录用日期: 2022-11-14
网络出版日期: 2022-11-29
基金资助
国家自然科学基金(11672128);江苏高校优势学科建设工程资助项目
Effects of slung load on heavy lift helicopter air resonance stability
Received date: 2022-09-08
Revised date: 2022-09-21
Accepted date: 2022-11-14
Online published: 2022-11-29
Supported by
National Natural Science Foundation of China(11672128);Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
飞行员驾驶重型直升机完成飞行任务时,可能出现与机体弹性变形有关的空中共振问题,且在吊挂飞行时会加剧,因此通过刚弹耦合建模与分析指出了重型直升机吊挂飞行时可能导致空中共振的3个耦合模态:旋翼摆振前进型-机体垂向弯曲耦合模态;旋翼-机体-吊索耦合模态;摆振后退型-机体滚转耦合模态。研究了这3个耦合模态对重型直升机空中共振稳定性的影响机理。分析结果表明:第1个耦合模态在重载吊挂悬停时最容易导致空中共振,而第2个耦合模态在轻载吊挂飞行时对空中共振稳定性影响最大,它们都会涉及旋翼摆振运动与机体垂向弯曲变形的耦合,但第2种会出现明显的吊索伸缩运动;第3个耦合模态会导致空中共振稳定裕度在重载吊挂时降低18%。
王洛烽 , 陈仁良 . 吊挂飞行对重型直升机空中共振稳定性的影响机理分析[J]. 航空学报, 2023 , 44(16) : 227983 -227983 . DOI: 10.7527/S1000-6893.2022.27983
Piloted heavy lift helicopters are faced with air resonance problems related to fuselage elasticity, which deteriorate when carrying a slung load. This paper points out three coupled modes that may lead to air resonance through heavy lift helicopters with slung load through rigid-elastic coupled modeling and analysis. The first is rotor progressive lag and fuselage vertical bending coupled mode, the second rotor-body-sling coupled mode, and the third regressive lag and fuselage rolling coupled air resonance. Their mechanisms and effects of slung load on air resonance stability were investigated. The results show that the first coupled mode is most likely to cause air resonance while hovering with heavy slung load, and that the second coupled mode has the largest impact on the air resonance stability when flying with light slung load. They are both related to rotor lagging motion and fuselage vertical bending, but the second involves significant sling extending-retracting. The third coupled mode causes an 18% reduction in air resonance stability margin when carrying a heavy slung load.
1 | 吴希明. 直升机动力学工程设计[M]. 北京: 航空工业出版社, 2017: 69-71. |
WU X M. Engineering design of helicopter dynamics[M]. Beijing: Aviation Industry Press, 2017: 69-71 (in Chinese). | |
2 | JOHNSON W. Recent developments in the dynamics of advanced rotor systems. Ⅱ: NASA-TM-86669 [R]. Washington, D.C.: NASA, 1985. |
3 | WALDEN R B. A retrospective survey of pilot-structural coupling instabilities in naval rotorcraft[C]∥the American Helicopter Society 63rd Annual Forum. 2007. |
4 | PAVEL M D, JUMP M, DANG-VU B, et al. Adverse rotorcraft pilot couplings—past, present and future challenges[J]. Progress in Aerospace Sciences, 2013, 62: 1-51. |
5 | LUCASSEN L R, STERK F J. Dynamic stability analysis of a hovering helicopter with a sling load[J]. Journal of the American Helicopter Society, 1965, 10(2): 6-12. |
6 | DUKES T A. Maneuvering heavy sling loads near hover part I: damping the pendulous motion[J]. Journal of the American Helicopter Society, 1973, 18(2): 2-11. |
7 | CLIFF E M, BAILEY D B. Dynamic stability of a translating vehicle with a simple sling load[J]. Journal of Aircraft, 1975, 12(10): 773-777. |
8 | SHELDON D F. A study of the stability of a plate-like load towed beneath a helicopter[J]. Journal of Mechanical Engineering Science, 1971, 13(5): 330-343. |
9 | NAGABHUSHAN B L. Systematic investigation of models of helicopter with a slung load[D]. Blacksburg, VA: Virginia Polytechnic Institute and State University, 1977. |
10 | FEASTER L, POLI C, KIRCHHOFF R. Dynamics of a slung load[J]. Journal of Aircraft, 1977, 14(2): 115-121. |
11 | SAMPATH P. Dynamics of a helicopter-slung load system[D]. Maryland: University of Maryland, 1980. |
12 | RONEN T, BRYSON J HINDSON A Jr,. Dynamics of a helicopter with a sling load[C]∥13th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1986: 2288. |
13 | CICOLANI L S, KANNING G. Equations of motion of slung-load systems, including multilift systems: NASA-TP-3280[R]. Washington, D.C.: NASA, 1992. |
14 | CICOLANI L S, MCCOY A H, SAHAI R, et al. Flight test identification and simulation of a UH-60A helicopter and slung load[J]. Journal of the American Helicopter Society, 2001, 46(2): 140-160. |
15 | GUGLIERI G, MARGUERETTAZ P. Dynamic stability of a helicopter with an external suspended load[J]. Journal of the American Helicopter Society, 2014, 59(4): 1-12. |
16 | SOMMER H J, CIMBALA J M, MILLER D G. Self-excited limit cycle yaw oscillation instability of external sling payloads with dual-point suspension during level flight[J]. Journal of the American Helicopter Society, 2015, 60(4): 1-10. |
17 | 陈元. 直升机吊挂飞行动力学建模及耦合研究[D]. 南京: 南京航空航天大学, 2018. |
CHEN Y. Flight dynamics modeling & coupling investigation of a helicopter suspended by a slung load[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
18 | WANG L, CHEN R. Nonlinear helicopter rigid-elastic coupled modeling with its applications on aeroservoelasticity analysis[J]. AIAA Journal, 2022, 60(1): 102-112. |
19 | 王洛烽, 陈仁良. 重型直升机飞行动力学刚弹耦合建模及空中共振稳定性分析[J]. 航空学报, 2021, 42(12): 124634. |
WANG L F, CHEN R L. Rigid-elastic coupled flight dynamic modeling and air resonance stability analysis for heavy lift helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124634 (in Chinese). | |
20 | CICOLANI L S, LUSARDI J, GREAVES L D, et al. Flight test results for the motions and aerodynamics of a cargo container and a cylindrical slung load: NASA/TP-2010-216380[R]. Washington D.C.: NASA, 2010. |
21 | KIM F D, CELI R, TISCHLER M B. High-order state space simulation models of helicopter flight mechanics[J]. Journal of the American Helicopter Society, 1993, 38(4): 16-27. |
22 | KIM F D, CELI R, TISCHLER M B. Forward flight trim and frequency response validation of a helicopter simulation model[J]. Journal of Aircraft, 1993, 30(6): 854-863. |
23 | KIM F D, CELI R, TISCHLER M B. Formulation and validation of high-order linearized models of helicopter flight mechanics[C]∥AHS, Annual Forum. Washington, D.C.: NTRS, 1990. |
24 | BOUSMAN W G. An experimental investigation of the effects of aeroelastic couplings on aeromechanical stability of a hingeless rotor helicopter[J]. Journal of the American Helicopter Society, 1981, 26(1): 46-54. |
25 | DUTTON W J. Parametric analysis and preliminary design of a shaft-driven rotor system for a heavy lift helicopter: USAAVLABS-TR-66-56[R]. Statford, CT: Sikorsky Aircraft Div of United Technologies Corp, 1967. |
26 | SHAUGHNESSY J D, DEAUX T N, YENNI K R. Development and validation piloted simulation helicopter and external sling load:NASA-TR-1285[R]. Washington,D.C.: NASA, 1979. |
/
〈 |
|
〉 |