结冰和防冰研究专栏

复杂气象条件下考虑结冰风险的无人机飞行策略

  • 郭琪磊 ,
  • 桑为民 ,
  • 牛俊杰 ,
  • 袁烨
展开
  • 1.西北工业大学 航空学院,西安  710072
    2.中国民用航空飞行学院 工程技术训练中心,广汉  618307
    3.中国空气动力研究与发展中心 结冰与防除冰重点实验室,绵阳  621000
    4.中国商用飞机有限责任公司 上海飞机设计研究院,上海  201210
.E-mail:aeroicing@sina.cn

收稿日期: 2022-05-25

  修回日期: 2022-06-15

  录用日期: 2022-09-09

  网络出版日期: 2022-09-13

基金资助

结冰与防除冰重点实验室开放课题(IADL20200101);国家重大项目(GJXM92579);国家科技专项

UAV flight strategy considering icing risk under complex meteorological conditions

  • Qilei GUO ,
  • Weimin SANG ,
  • Junjie NIU ,
  • Ye YUAN
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Engineering Techniques Training Center,Civil Aviation Flight University of China,Guanghan 618307,China
    3.Key Laboratory of Icing and Anti/De-icing,China Aerodynamics Research and Development Center,Mianyang 621000,China
    4.Shanghai Aircraft Design and Research Institute,Commercial Aircraft Corporation of China Ltd,Shanghai  201210,China
E-mail: aeroicing@sina.cn

Received date: 2022-05-25

  Revised date: 2022-06-15

  Accepted date: 2022-09-09

  Online published: 2022-09-13

Supported by

Open Fund of Key Laboratory of Icing and Anti/De-icing of China(IADL20200101);National Key Project of China(GJXM92579);National Science and Technology Project

摘要

为解决无人机在复杂气象条件下易受结冰影响而威胁其飞行安全的问题,提出了一种考虑结冰风险的无人机航迹规划方法。首先,构建基于中尺度WRF (Weather Research and Forecasting)模式的结冰气象预测模型,通过最佳参数化方案组合的结冰气象模拟获得模拟时段内海南乐东地区的温度、压力、液态水含量(LWC)空间分布及时序变化。其次,构建基于代理模型的水滴收集质量快速预测方法。在获取美国联邦航空条例(FAR)25部附录C中连续最大结冰条件下40个采样点处水滴收集质量分布的基础上,利用本征正交分解(POD)降阶模型和Kriging插值算法,建立温度、压力、LWC、平均有效水滴直径(MVD)等结冰气象参数与水滴收集质量之间的代理模型,可快速预测出目标区域内水滴收集质量的空间分布与时序变化。最后,根据飞机结冰强度划分等级,以不同结冰强度下水滴收集质量阈值为结冰安全约束,利用基于粒子群优化(PSO)的结冰容限航迹规划方法进行考虑结冰风险的无人机飞行策略研究。研究结果表明:利用WRF模式可获得温度、压力、LWC等结冰气象参数,预测值与观测值匹配良好;基于POD降阶模型和Kriging插值算法,构建的气象参数与水滴收集质量间代理模型可快速准确地获取目标区域内水滴收集质量的空间分布与时序变化;基于PSO的结冰容限航迹规划方法可在不同结冰安全约束条件下,规划出无人机最优航迹。

本文引用格式

郭琪磊 , 桑为民 , 牛俊杰 , 袁烨 . 复杂气象条件下考虑结冰风险的无人机飞行策略[J]. 航空学报, 2023 , 44(1) : 627518 -627518 . DOI: 10.7527/S1000-6893.2022.27518

Abstract

UAVs are vulnerable to icing under complex meteorological conditions, thus threatening flight safety. To solve this problem, this paper proposes a UAV trajectory planning method considering the icing risk. Firstly, an icing meteorological prediction model based on the mesoscale Weather Research and Forecasting (WRF) model is constructed. By icing meteorological prediction with the best combination of parameterization schemes, the spatial distribution and temporal evolution of temperature, pressure and Liquid Water Content (LWC) in the Ledong area of Hainan from May to July 2021 are obtained. Secondly, a rapid prediction method for water droplet collection based on the surrogate model is established. The Optimal Latin Hypercube Sampling (OLHS) method is employed to sample the continuous maximum icing conditions in Appendix C of Federal Aviation Regulations (FAR) Part 25, and the droplet impact characteristics are numerically calculated for 40 sampling points to obtain the distribution of water droplet collection at each sampling point. Based on the Proper Orthogonal Decomposition (POD) reduced-order model and the Kriging interpolation method, a surrogate model between the water droplet collection and meteorological parameters, such as temperature, pressure, LWC and droplets Median Volumetric Diameter (MVD), is established.On the basis of the established surrogate model, the spatial distribution and temporal evolution of water droplet collection in the target area are obtained. Finally, taking the threshold of water droplet collection at various icing intensity as the icing safety constraint, we use the Particle Swarm Optimization (PSO)-based icing tolerance trajectory planning method to optimize the flight strategy of the UAV considering the icing risk to overcome the defects of the existing icing prediction algorithms lack of icing risk quantification. The results show that the icing meteorological parameters predicted by the WRF model, such as temperature, pressure, and LWC, match well with the observations. Based on the POD model and Kriging method, the constructed surrogate model between meteorological parameters and water droplet collection can quickly and accurately predict the spatial distribution and temporal evolution of water droplet collection in the target area. The PSO-based icing tolerance trajectory planning method is competent to plan the optimal trajectory of the UAV under different icing safety constraints.

参考文献

1 HANN R. UAV icing: Comparison of LEWICE and FENSAP-ICE for ice accretion and performance degradation[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018.
2 李琳佩. 基于无人机的高能效通信策略研究[D]. 北京: 北京邮电大学, 2021.
  LI L P. Research on energy efficient communication strategies based on unmanned aerial vehicles[D]. Beijing: Beijing University of Posts and Telecommunications, 2021 (in Chinese).
3 CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology201875: 353-385.
4 WU Q, XU H J, PEI B B, et al. Conceptual design and preliminary experiment of icing risk management and protection system[J]. Chinese Journal of Aeronautics202235(6): 101-115.
5 LI H R, ZHANG Y F, CHEN H X. Optimization design of airfoils under atmospheric icing conditions for UAV[J]. Chinese Journal of Aeronautics202235(4): 118-133.
6 Federal Aviation Administration. Federal aviation regulations Part 25: Airworthiness standards transport category airplanes [S]. Washington, D.C.: Federal Aviation Administration, 2022.
7 刘旭光. 数值预报产品在航空气象预报中的应用[J]. 四川气象200121(4): 18-22.
  LIU X G. Application of numerical forecast products in aviation weather forecast[J]. Journal of Sichuan Meteorology200121(4): 18-22 (in Chinese).
8 POLITOVICH M, SAND W. A proposed icing severity index based upon meteorology[C]∥International Conference on Aviation Weather Systems, 1991: 157-162.
9 THOMPSON G, BRUINTJES R T, BROWN B G, et al. Intercomparison of in-flight icing algorithms. Part I: WISP94 real-time icing prediction and evaluation program[J]. Weather and Forecasting199712(4): 878-889.
10 FORBES G S, HU Y, BROWN B G, et al. Examination of conditions in the proximity of pilot reports of aircraft icing during STORM-FEST[C]∥International Conference on Aviation Weather Systems, 1993: 282-286.
11 MCDONOUGH F, BERNSTEIN B, POLITOVICH M, et al. The forecast icing potential algorithm[C]∥ 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
12 BERNSTEIN B C, MCDONOUGH F, POLITOVICH M K, et al. Current icing potential: Algorithm description and comparison with aircraft observations[J]. Journal of Applied Meteorology200544(7): 969-986.
13 BERNSTEIN B C, WOLFF C A, MCDONOUGH F. An inferred climatology of icing conditions aloft, including supercooled large drops. Part I: Canada and the continental United States[J]. Journal of Applied Meteorology and Climatology200746(11): 1857-1878.
14 王洪芳, 刘健文, 纪飞, 等. 飞机积冰业务预报技术研究[J]. 气象科技200331(3): 140-146.
  WANG H F, LIU J W, JI F, et al. Operational forecast technique of aircraft icing[J]. Meteorological Science and Technology200331(3): 140-146 (in Chinese).
15 李佰平, 戴建华, 孙敏, 等. 一种改进的飞机自然结冰潜势算法研究[J]. 气象201844(11): 1377-1390.
  LI B P, DAI J H, SUN M, et al. An improved aircraft natural icing potential algorithm[J]. Meteorological Monthly201844(11): 1377-1390 (in Chinese).
16 王义凡. 考虑历史和未来气候变化的台风风场多尺度模拟[D]. 杭州: 浙江大学, 2020.
  WANG Y F. Multi-scale simulation of typhoon wind field considering historical and future climate changes[D]. Hangzhou: Zhejiang University, 2020 (in Chinese).
17 FERNáNDEZ-GONZáLEZ S, SáNCHEZ J L, GASCóN E, et al. Weather features associated with aircraft icing conditions: A case study[J]. The Scientific World Journal20142014: 279063.
18 MERINO A, GARCíA-ORTEGA E, FERNáNDEZ-GONZáLEZ S, et al. Aircraft icing: In-cloud measurements and sensitivity to physical parameterizations[J]. Geophysical Research Letters201946(20): 11559-11567.
19 STITH J L, DYE J E, BANSEMER A, et al. Microphysical observations of tropical clouds[J]. Journal of Applied Meteorology200241(2): 97-117.
20 LAWSON P, GURGANUS C, WOODS S, et al. Aircraft observations of cumulus microphysics ranging from the tropics to midlatitudes: Implications for a “new” secondary ice process[J]. Journal of the Atmospheric Sciences201774(9): 2899-2920.
21 柯元惠, 马明明, 郑艳, 等. 海南岛雷暴大风天气形势和环境参数特征分析[J]. 暴雨灾害202241(1): 86-93.
  KE Y H, MA M M, ZHENG Y, et al. Analysis of synoptic situation and environmental parameters of thunderstorm gales in Hainan[J]. Torrential Rain and Disasters202241(1): 86-93 (in Chinese).
22 HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review2006134(9): 2318-2341.
23 KAIN J S. The Kain-Fritsch convective parameterization: An update[J]. Journal of Applied Meteorology200443(1): 170-181.
24 MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres1997102(D14): 16663-16682.
25 DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences198946(20): 3077-3107.
26 FAIRALL C W, BRADLEY E F, HARE J E, et al. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm[J]. Journal of Climate200316(4): 571-591.
27 CHEN F, DUDHIA J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Monthly Weather Review2001129(4): 569-585.
28 HONG S Y, LIM J O J. The WRF single-moment 6-class microphysics scheme (WSM6) [J]. Journal of the Korean Meteorological Society200642: 129–151.
29 CHEN S H, SUN W Y. A one-dimensional time dependent cloud model[J]. Journal of the Meteorological Society of Japan Ser II200280(1): 99-118.
30 THOMPSON G, FIELD P R, RASMUSSEN R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization[J]. Monthly Weather Review2008136(12): 5095-5115.
31 MORRISON H, THOMPSON G, TATARSKII V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes[J]. Monthly Weather Review2009137(3): 991-1007.
32 刘藤, 李栋, 黄冉冉, 等. 基于降阶模型的翼型结冰冰形预测方法[J]. 北京航空航天大学学报201945(5): 1033-1041.
  LIU T, LI D, HUANG R R, et al. Ice shape prediction method of aero-icing based on reduced order model[J]. Journal of Beijing University of Aeronautics and Astronautics201945(5): 1033-1041 (in Chinese).
33 SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅰ-Coherent structures[J]. Quarterly of Applied Mathematics198745(3): 561-571.
34 SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅱ-Symmetries and transformations[J]. Quarterly of Applied Mathematics198745(3): 573-582.
35 SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅲ-Dynamics and scaling[J]. Quarterly of Applied Mathematics198745(3): 583-590.
36 邱亚松, 白俊强, 华俊. 基于本征正交分解和代理模型的流场预测方法[J]. 航空学报201334(6): 1249-1260.
  QIU Y S, BAI J Q, HUA J. Flow field estimation method based on proper orthogonal decomposition and surrogate model[J]. Acta Aeronautica et Astronautica Sinica201334(6): 1249-1260 (in Chinese).
37 唐必伟. 粒子群算法的改进及其在无人机任务规划中的应用[D]. 西安: 西北工业大学, 2017.
  TANG B W. An improved particle swarm optimization method and its application on mission planning of unmanned aerial vehicle[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
38 KENNEDY J, EBERHART R. Particle swarm optimization[C]∥Proceedings of ICNN'95-International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948.
39 ZHANG Y, GONG D W, ZHANG J H. Robot path planning in uncertain environment using multi-objective particle swarm optimization[J]. Neurocomputing2013103: 172-185.
40 TANG B W, XIANG K, PANG M Y, et al. Multi-robot path planning using an improved self-adaptive particle swarm optimization[J]. International Journal of Advanced Robotic Systems202017(5): 172988142093615.
41 JONES S L. Simulation of meteorological fields for icing applications at the summit of mount Washington[D]. Lincoln: University of Nebraska-Lincoln, 2014.
文章导航

/