等离子体激励器对高速翼型升阻特性的影响

  • 孙志坤 ,
  • 史志伟 ,
  • 张伟麟 ,
  • 李铮 ,
  • 孙琪杰
展开
  • 1.南京航空航天大学 航空学院,南京 210016
    2.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
E-mail: szwam@nuaa.edu.cn

收稿日期: 2022-06-29

  修回日期: 2022-07-29

  录用日期: 2022-08-03

  网络出版日期: 2022-08-08

基金资助

省部级项目

Effect of plasma actuator on lift-drag characteristics of high-speed airfoil

  • Zhikun SUN ,
  • Zhiwei SHI ,
  • Weilin ZHANG ,
  • Zheng LI ,
  • Qijie SUN
Expand
  • 1.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
E-mail: szwam@nuaa.edu.cn

Received date: 2022-06-29

  Revised date: 2022-07-29

  Accepted date: 2022-08-03

  Online published: 2022-08-08

Supported by

Provincial or Ministry Level Project

摘要

等离子体激励作为一种响应时间极短的主动流动控制技术而被广泛研究。为考查等离子体合成射流激励器改善高超声速飞行器升阻特性的能力,采用数值模拟方法研究了激励器的空腔、激励器的布置位置、来流迎角以及放电参数对高速翼型气动性能改善效果的影响,并进行了相应的实验验证。结果表明:激励器自身的空腔会产生减阻效果,并且空腔的时均减阻效果优于等离子体激励器的时均减阻效果。激励器越靠近翼型的前缘点,翼型气动性能提升越强。高超声速翼型前缘斜劈区,是激励器进行翼型气动性能改善的最佳几何位置。当激励器在最佳几何位置处时,来流迎角的增加会降低激励器空腔对翼型气动性能产生的负面影响,但也会对激励器时均流动控制性能产生削弱作用。此外,为提高激励器的能量利用效率,以翼型气动性能提升的效果作为衡量,研究了不同放电参数对等离子体激励器改善翼型气动性能的影响,并得到激励器提升高超声速翼型升阻特性时的最优占空比为1.83%。研究结果为等离子体合成射流激励器进行高超声速流动控制提供了参考。

本文引用格式

孙志坤 , 史志伟 , 张伟麟 , 李铮 , 孙琪杰 . 等离子体激励器对高速翼型升阻特性的影响[J]. 航空学报, 2022 , 43(S2) : 23 -39 . DOI: 10.7527/S1000-6893.2022.27705

Abstract

Plasma excitation is widely studied as an active flow control technology with a short response time. Numerical simulations are used to investigate the effects of the actuator cavity, actuator arrangement position, angle of attack, and discharge parameters on improvement in the lift-drag characteristics of hypersonic airfoils. Corresponding experimental validation is conducted. The results show that the cavity of the exciter will generate a drag reduction effect, and the time-average drag reduction effect of the cavity is better than that of the plasma actuator. The decreasing distance of the actuator to the airfoil leading edge leads to stronger improvement in the aerodynamic performance of the airfoil. The hypersonic airfoil leading edge wedge area is the optimum geometric position for the actuator to improve the aerodynamic performance of the airfoil. Increasing the inflow angle of attack reduces the negative effect of the actuator cavity on the airfoil aerodynamic performance when the actuator is in the optimum geometric position, while also impairing the time-average flow control performance of the actuator. In addition, to improve the exciter energy utilization efficiency, the effect of different discharge parameters on the aerodynamic performance improvement of the airfoil is studied. The optimum duty cycle of the plasma synthetic jet exciter for lifting the drag and lift characteristics of hypersonic airfoils is 1.83%. The results provide a reference for the control of hypersonic flow with plasma synthetic jet exciter.

参考文献

1 SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28.
2 KANISTRAS K, RUTHERFORD M J, VITZILAIOS N, et al. Experimental study of circulation control wings at low Reynolds numbers[C]∥32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014.
3 KIM K, POKHAREL P, YEOM T. Enhancing forced-convection heat transfer of a channel surface with synthetic jet impingements[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122770.
4 FOMIN V M, MASLOV A A, MALMUTH N D, et al. Influence of a counterflow plasma jet on supersonic blunt-body pressures[J]. AIAA Journal, 2002, 40(6): 1170-1177.
5 SHARMA S, JESUDHAS V, BALACHANDAR R, et al. Turbulence structure of a counter-flowing wall jet[J]. Physics of Fluids, 2019, 31(2): 025110.
6 CYBYK B, GROSSMAN K, VAN WIE D. Computational assessment of the SparkJet flow control actuator[C]∥33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003.
7 GROSSMAN K, BOHDAN C, VANWIE D. Sparkjet actuators for flow control[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
8 CYBYK B, GROSSMAN K, WILKERSON J. Performance characteristics of the SparkJet flow control actuator[C]∥2nd AIAA Flow Control Conference. Reston: AIAA, 2004.
9 GROSSMAN K, CYBYK B, VANWIE D, et al. Characterization of SparkJet actuators for flow control[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
10 李应红, 吴云, 梁华, 等. 等离子体激励气动力学探索与展望[J]. 力学进展, 2022, 52(1): 1-32.
  LI Y H, WU Y, LIANG H, et al. Exploration and outlook of plasma-actuated gas dynamics[J]. Advances in Mechanics, 2022, 52(1): 1-32 (in Chinese).
11 EMERICK T, ALI M Y, FOSTER C, et al. SparkJet characterizations in quiescent and supersonic flowfields[J]. Experiments in Fluids, 2014, 55(12): 1858.
12 POPKIN S H, CYBYK B, LAND B, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications[C]∥51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
13 KO H S, HAACK S J, LAND H B, et al. Analysis of flow distribution from high-speed flow actuator using particle image velocimetry and digital speckle tomography[J]. Flow Measurement and Instrumentation, 2010, 21(4): 443-453.
14 NARAYANASWAMY V, CLEMENS N, RAJA L. Investigation of a pulsed-plasma jet for shock/boundary layer control[C]∥48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
15 NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7): 076101.
16 NARAYANASWAMY V, SHIN J, CLEMENS N, et al. Investigation of plasma-generated jets for supersonic flow control[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
17 GREENE B, CLEMENS N, MICKA D. Control of shock boundary layer interaction using pulsed plasma jets[C]∥51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
18 IBRAHIM I H, SKOTE M. Simulating plasma actuators in a channel flow configuration by utilizing the modified Suzen-Huang model[J]. Computers & Fluids, 2014, 99: 144-155.
19 TANG M X, WU Y, WANG H Y, et al. Characterization of transverse plasma jet and its effects on ramp induced separation[J]. Experimental Thermal and Fluid Science, 2018, 99: 584-594.
20 ZONG H H, WU Y, LI Y H, et al. Analytic model and frequency characteristics of plasma synthetic jet actuator[J]. Physics of Fluids, 2015, 27(2): 027105.
21 CORREALE G, KOTSONIS M. Effect of nanosecond-pulsed plasma actuation on a separated laminar flow[J]. Experimental Thermal and Fluid Science, 2017, 81: 406-419.
22 SUN Z K, SHI Z W, ZHANG W L, et al. Numerical investigation on flow control of a hypersonic airfoil by plasma synthetic jet[J]. Journal of Aerospace Engineering, 2022, 35(5): 04022071.
23 JIN D, CUI W, LI Y H, et al. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow[J]. Chinese Journal of Aeronautics, 2015, 28(1): 66-76.
24 LI Z, SHI Z W, DU H. Analytical model: characteristics of nanosecond pulsed plasma synthetic jet actuator in multiple-pulsed mode[J]. Advances in Applied Mathematics and Mechanics, 2017, 9(2): 439-462.
25 ZHANG W L, GENG X, SHI Z W, et al. Study on inner characteristics of plasma synthetic jet actuator and geometric effects[J]. Aerospace Science and Technology, 2020, 105: 106044.
26 BREDEN D, RAJA L. Simulations of nanosecond pulsed plasmas in supersonic flows for combustion applications[J]. AIAA Journal, 2012, 50(3): 647-658.
27 SUDARSHAN B, SARAVANAN S. Heat flux characteristics within and outside a forward facing cavity in a hypersonic flow[J]. Experimental Thermal and Fluid Science, 2018, 97: 59-69.
28 SUDARSHAN B, DEEP S, JAYARAM V, et al. Experimental study of forward-facing cavity with energy deposition in hypersonic flow conditions[J]. Physics of Fluids, 2019, 31(10): 106105.
文章导航

/