论文

水陆两栖飞机高支柱起落架的刹车振动行为

  • 杜晓琼 ,
  • 李斌 ,
  • 罗琳胤
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中航通飞华南飞机工业有限公司, 珠海 519040

收稿日期: 2021-08-05

  修回日期: 2022-03-08

  网络出版日期: 2022-03-04

基金资助

国家自然科学基金(11872312);高等学校创新引智计划(BP0719007)

Braking vibration behavior of high strut landing gear of amphibious aircraft

  • DU Xiaoqiong ,
  • LI Bin ,
  • LUO Linyin
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC General Huanan Aircraft Industry Co. Ltd., Zhuhai 519040, China

Received date: 2021-08-05

  Revised date: 2022-03-08

  Online published: 2022-03-04

Supported by

National Natural Science Foundation of China (11872312); Program of Introducing Talents of Discipline to Universities(BP0719007)

摘要

以水陆两栖飞机高支柱起落架为研究对象,对飞机刹车滑跑时起落架的航向振动问题进行了研究。首先建立了可用于振动分析的起落架多体动力学模型,分别采用模态试验、落震试验和静力试验结果对起落架的固有模态、缓冲性能以及刚度进行充分校验,仿真结果与试验结果吻合很好,得到用于振动响应分析的刚柔耦合精确模型。随后加入刹车控制系统模型,研究了起落架从降落到刹车再到停飞的全过程振动响应,对比了恒力矩刹车、速度差PBM刹车控制和滑移率PID刹车控制3种条件下的刹车效果和起落架振动特性。结果表明:恒力矩刹车在力矩幅值超过23.4 kN·m时机轮进入打滑。滑移率PID控制系统较速度差PBM控制系统刹车距离减小19.17%,刹车时间缩短25.45%。但滑移率PID刹车控制系统作用下轮轴航向初始振动较大,通过调整初始滑移率上升到最佳滑移率的斜率,使得轮轴航向位移最大幅值减小31.24%。对于轮速传感器信号突变造成的系统扰动,速度差PBM刹车控制系统造成刹车失灵,滑移率PID刹车控制系统可迅速恢复,抗扰动能力强。

本文引用格式

杜晓琼 , 李斌 , 罗琳胤 . 水陆两栖飞机高支柱起落架的刹车振动行为[J]. 航空学报, 2022 , 43(6) : 526199 -526199 . DOI: 10.7527/S1000-6893.2022.26199

Abstract

The heading vibration of a certain type of high strut landing gear of amphibious aircraft is studied during the aircraft braking and sliding. A multi-body dynamics model of gear vibration is first established. The results of the modal test, drop test and static test are used to fully verify the modal, cushioning performance and stiffness performance of the landing gear, which show good agreement with the simulation results, thus obtaining the rigid-flexible coupling accurate model for gear heading vibration analysis. The model of the brake control system is then introduced to study the whole process of the landing gear vibration response from landing to braking and then to grounding. The braking efficiency and gear vibration characteristics of the constant braking torque, the speed difference PBM brake control system and the slip rate PID brake control system are compared. The results show that the wheel will lock when the braking torque amplitude exceeds 23.4 kN·m. Compared with the pressure-bias-modulated brake control system, the braking distance and braking time of the PID brake control system are reduced by 19.17% and 25.45%, respectively. However, the initial vibration of the wheel axle is relatively large under the action of the PID brake control system. Adjusting the slope of the initial slip rate to the optimum slip rate reduces the maximum amplitude of the wheel axle longitudinal displacement by 31.24%. Finally, to study the stability of the two kinds of brake systems, we add abrupt signal variation to the wheel speed sensor module. The results reveal that the PBM brake control system causes brake failure, while the PID brake control system can quickly recover, showing strong anti-disturbance ability.

参考文献

[1] ENRIGHT J J. Laboratory simulation of landing gear pitch-plane dynamics[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale:SAE International, 1985.
[2] PRITCHARD J. Overview of landing gear dynamics[J]. Journal of Aircraft, 2001, 38(1):130-137.
[3] HIRZEL E A. Antiskid and modern aircraft:720868[R]. Warrendale:SAE International, 1972.
[4] 梁波, 李玉忍, 田广来. 飞机防滑刹车系统建模与仿真[M]. 北京:国防工业出版社, 2015. LIANG B, LI Y R, TIAN G L. Modeling and simulation of aircraft anti-skid brake system[M]. Beijing:National Defense Industry Press, 2015(in Chinese).
[5] LIN C M, LI H Y. Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(6):1044-1055.
[6] JIAO Z X, SUN D, SHANG Y X, et al. A high efficiency aircraft anti-skid brake control with runway identification[J]. Aerospace Science and Technology, 2019, 91:82-95.
[7] 库玉鳌. 刹车与起落架抖动的相互影响[J]. 航空学报, 1997, 18(2):228-230. KU Y A. Interaction between braking and landing gear vibration[J]. Acta Aeronautica et Astronautica Sinica, 199618(2):228-230(in Chinese).
[8] 张陵, 诸德培. 主起落架纵向抖振的动态特性研究[J]. 航空学报, 1996, 17(3):292-296. ZHANG L, ZHU D P. On the dynamic properties of landing gear walking[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(3):292-296(in Chinese).
[9] 张陵, 诸德培. 缓冲器支柱特性对主起落架纵向抖振的影响[J]. 西北工业大学学报, 1996, 14(2):244-248. ZHANG L, ZHU D P. Effect of properties of absorbing strut on gear walking[J]. Journal of Northwestern Polytechnical University, 1996, 14(2):244-248(in Chinese).
[10] 李锋, 刘刚, 张瑜. 飞机防滑刹车系统结构谐振一体化设计的仿真研究[J]. 西北工业大学学报, 1999, 17(3):404-408. LI F, LIU G, ZHANG Y. A simulation research on proper design of aircraft antiskid braking system considering avoidance of gear walk[J]. Journal of Northwestern Polytechnical University, 1999, 17(3):404-408(in Chinese).
[11] KRVGER W R, MORANDINI M. Recent developments at the numerical simulation of landing gear dynamics[J]. CEAS Aeronautical Journal, 2011, 1(1-4):55-68.
[12] GUALDI S, MORANDINI M, GHIRINGHELLI G L. Anti-skid induced aircraft landing gear instability[J]. Aerospace Science and Technology, 2008, 12(8):627-637.
[13] LERNBEISS R, PLÖCHL M. Simulation model of an aircraft landing gear considering elastic properties of the shock absorber[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-Body Dynamics, 2007, 221(1):77-86.
[14] KHAPANE P D. Gear walk instability studies using flexible multibody dynamics simulation methods in SIMPACK[J]. Aerospace Science and Technology, 2006, 10(1):19-25.
[15] D'AVICO L, TANELLI M, SAVARESI S M, et al. A deceleration-based algorithm for anti-skid control of aircraft[J]. IFAC-PapersOnLine, 2017, 50(1):14168-14173.
[16] 张明, 吴晓宇. 飞机主起落架刹车诱导抖振分析[J]. 机械科学与技术, 2018, 37(11):1783-1790. ZHANG M, WU X Y. Analysis on brake induced vibration of aircraft main landing gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11):1783-1790(in Chinese).
[17] 尹乔之, 聂宏, 张明, 等. 某半轴支柱式起落架低频刹车诱导振动特性研究[J]. 振动工程学报, 2016, 29(6):954-962. YIN Q Z, NIE H, ZHANG M, et al. Vibration characteristics of gear walk on half-axle landing gear[J]. Journal of Vibration Engineering, 2016, 29(6):954-962(in Chinese).
[18] NIE H, YIN Q Z, ZHANG M, et al. Analysis of the influence of braking control laws on gear walk[J]. Journal of Vibroengineering, 2016, 18(3):1723-1741.
[19] YIN Q Z, JIANG J Z, NEILD S A, et al. Investigation of gear walk suppression while maintaining braking performance in a main landing gear[J]. Aerospace Science and Technology, 2019, 91:122-135.
[20] 黄领才, 雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报, 2019, 40(1):522708. HUANG L C, YONG M P. Key technologies and industrial application prospects of amphibian aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522708(in Chinese).
[21] 喻天翔, 张玉刚, 万晓峰. LMS Virtual.Lab Motion进阶与案例教程[M]. 西安:西北工业大学出版社, 2017. YU T X, ZHANG Y G, WAN X F. LMS Virtual.Lab Motion advanced tutorial[M]. Xi'an:Northwestern Polytechnical University Press, 2017(in Chinese).
[22] 王纪森, 何长安. 飞机轮胎与跑道间结合系数模型的研究[J]. 西北工业大学学报, 2000, 18(4):569-571. WANG J S, HE C A. Determination of tire-runway friction coefficient[J]. Journal of Northwestern Polytechnical University, 2000, 18(4):569-571(in Chinese).
文章导航

/