激波/边界层干扰机理与控制专栏

压缩-膨胀湍流边界层平均摩阻分解

  • 段俊亦 ,
  • 童福林 ,
  • 李新亮 ,
  • 刘洪伟
展开
  • 1. 中国科学院力学研究所 高温气体动力学国家重点实验室, 北京 100190;
    2. 中国科学院大学 工程科学学院, 北京 100049;
    3. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    4. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000

收稿日期: 2021-06-07

  修回日期: 2021-08-04

  网络出版日期: 2022-02-14

基金资助

国家重点研发计划(2019YFA0405300,2016YFA0401200);国家自然科学基金(91852203);国家数值风洞工程;科学挑战专题(TZ2016001);中国科学院战略先导专项(XDC01000000,XDA17030100)

Decomposition of mean friction drag in compression-expansion turbulent boundary layer

  • DUAN Junyi ,
  • TONG Fulin ,
  • LI Xinliang ,
  • LIU Hongwei
Expand
  • 1. State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    4. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-06-07

  Revised date: 2021-08-04

  Online published: 2022-02-14

Supported by

National Key R&D Program of China (2019YFA0405300, 2016YFA0401200);National Natural Science Foundation of China (91852203);National Numerical Windtunnel Project;Science Challenge Project (TZ2016001);Strategic Priority Research Program of Chinese Academy of Sciences (XDC01000000, XDA17030100)

摘要

采用直接数值模拟对来流马赫数2.9、24°压缩-膨胀折角构型中激波与湍流边界层干扰问题进行了研究。重点关注膨胀折角法向高度对激波干扰区以及下游平板边界层流动的影响。研究发现,当高度足够大时,激波干扰区内未受下游膨胀波的影响,此时的流动特征与传统的压缩折角干扰构型一致。高度较小时,脱体剪切层的再附过程受到下游膨胀波的加速影响,导致再附点向上游移动,分离泡发生剧烈收缩。对上、下游平板湍流边界层应用了平均摩阻分解技术,比较了湍流边界层在平衡和非平衡状态下的差异。分析发现,膨胀折角区域的高摩阻现象主要与摩阻分解后的Cf1项与Cf3项相关。高度变化对Cf1项影响较小,而对Cf2项影响显著。高度变化体现在:下游平板上Görtler涡结构强度以及层流化现象对Cf2项贡献的差异。

本文引用格式

段俊亦 , 童福林 , 李新亮 , 刘洪伟 . 压缩-膨胀湍流边界层平均摩阻分解[J]. 航空学报, 2022 , 43(1) : 625915 -625915 . DOI: 10.7527/S1000-6893.2021.25915

Abstract

The interaction between the shock wave with Mach number 2.9 and the turbulent boundary layer in the configuration of 24° compression-expansion corners is investigated by using direct numerical simulation. The influence of normal height of the expansion corner on the shock wave interaction region and downstream boundary layer is analyzed. It is found that when the height is large enough, the shock wave interaction region is not affected by the downstream expansion wave, and the characteristics are consistent with those of the traditional compression corner configuration. While the height is small, the reattachment process of the detached shear layer is accelerated by the downstream expansion wave, which causes the reattachment point to move upstream and the separation bubble to shrink dramatically. The decomposition of mean friction drag is applied to the turbulent boundary layer of the upstream and downstream plates, and the difference between the turbulent boundary layer in equilibrium and nonequilibrium state is explored. It is found that the high friction in the expansion corner is mainly related to the Cf1 term and Cf3 term in the decomposition of mean friction drag. The height has little effect on the Cf1 term, while significant effect on the Cf2 term. Height variation is reflected in the contribution of the Görtler vortex and re-laminar phenomenon on the downstream plate to the Cf2 term.

参考文献

[1] FERRI A. Experimental results with airfoils tested in the high-speed tunnel at Guidonia: NACA-TM-946[C]. Washington, D.C.: NACA, 1940.
[2] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39(8): 1517-1531.
[3] SETTLES G S, FITZPATRICK T J, BOGDONOFF S M. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow[J]. AIAA Journal, 1979, 17(6): 579-585.
[4] DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12): 1628-1634.
[5] DOLLING D S, OR C T. Unsteadiness of the shock wave structure in attached and separated compression ramp flows[J]. Experiments in Fluids, 1985, 3(1): 24-32.
[6] BOOKEY P, WYCKHAM C, SMITS A, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers: AIAA-2005-0309[R]. Reston: AIAA, 2005.
[7] WU M, MARTÍN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4): 879-889.
[8] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(9): 1651-1658.
[9] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6): 569-588.
[10] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner: Turning angle effects[J]. Computers & Fluids, 2017, 149: 56-69.
[11] 童福林, 李欣, 于长平, 等. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208. TONG F L, LI X, YU C P, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208(in Chinese).
[12] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2006, 565: 135-169.
[13] ZHELTOVODOV A A. Peculiarities of development and modeling possibilities of supersonic turbulent separated flows[M]//Separated Flows and Jets. Berlin, Heidelberg: Springer, 1991: 225-236.
[14] GRILLI M, HICKEL S, ADAMS N A. Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp[J]. International Journal of Heat and Fluid Flow, 2013, 42: 79-93.
[15] FANG J, YAO Y F, ZHELTOVODOV A A, et al. Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner[J]. Physics of Fluids, 2015, 27(12): 125104.
[16] RITOS K, DRIKAKIS D, KOKKINAKIS I W, et al. Computational aeroacoustics beneath high speed transitional and turbulent boundary layers[J]. Computers & Fluids, 2020, 203: 104520.
[17] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73-L76.
[18] RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339-367.
[19] LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101-123.
[20] MARTÍN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289.
[21] POGGIE J, BISEK N J, GOSSE R. Resolution effects in compressible, turbulent boundary layer simulations[J]. Computers & Fluids, 2015, 120: 57-69.
[22] PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3): 530-545.
[23] WU X H, MOIN P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2009, 630: 5-41.
[24] PIROZZOLI S, BERNARDINI M. Turbulence in supersonic boundary layers at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2011, 688: 120-168.
[25] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94.
[26] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6): 065113.
[27] TERAMOTO S, SANADA H, OKAMOTO K. Dilatation effect in relaminarization of an accelerating supersonic turbulent boundary layer[J]. AIAA Journal, 2017, 55(4): 1469-1474.
[28] FAN Y T, LI W P, PIROZZOLI S. Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers[J]. Physics of Fluids, 2019, 31(8): 086105.
[29] NARASIMHA R, VISWANATH P R. Reverse transition at an expansion corner in supersonic flow[J]. AIAA Journal, 1975, 13(5): 693-695.
文章导航

/